
1

Log Structured File Systems

Learning Outcomes

• An understanding of the performance of Inode-
based files systems when writing small files.

• An understanding of how a log structured file
system can improve performance, and increase
reliability via improved consistency guarantees
without the need for file system checkers.

• An understanding of “cleaning” and how it might
detract from performance.

2

“The Design and Implementation of a

Log-Structured File System”

Mendel Rosenblum and John K. Ousterhout

ACM Transactions on Computer Systems,
Vol 10, No. 1, February 1992, Pages 26-52

3

4

Original Motivating
Observations

• Memory size is growing at a rapid rate

⇒ Growing proportion of file system reads
will be satisfied by file system buffer cache

⇒ Writes will increasingly dominate reads

5

Motivating Observations
• Creation/Modification/Deletion of small files form the majority of a

typical workload
• Workload poorly supported by traditional Inode-based file system

(e.g. BSD FFS, ext2fs)
– Example: create 1k file results in: 2 writes to the file inode, 1 write to

data block, 1 write to directory data block, 1 write to directory inode
⇒ 5 small writes scattered within group

– Synchronous writes (write-through caching) of metadata and
directories make it worse

• Each operation will wait for disk write to complete.

• Write performance of small files dominated by cost of metadata
writes

Super
Block

Group
Descrip-

tors

Data
Block

Bitmap

Inode
Bitmap

Inode
Table

Data blocks

6

Motivating Observations

• Consistency checking required for ungraceful
shutdown due to potential for sequence of
updates to have only partially completed.

• File system consistency checkers are time
consuming for large disks.

• Unsatisfactory boot times where consistency
checking is required.

7

Basic Idea!!!

• Buffer sequence of updates in memory
and write all updates sequentially to disk in
one go.

Data Inode Dir
Meta-
Data

Disk

Example

8

Advantages

• Writes are now sequential
– Good performance for many small writes

9

10

How to locate i-nodes?

• How do we now find I-nodes that are scattered
around the disk?

⇒ Keep a map of inode locations
– Inode map is also “logged”
– Assumption is I-node map is heavily cached and

rarely results in extra disk accesses
– To find block in the I-node map, use two fixed

locations on the disk contain the address of blocks of
the inode map

• Two copies of the inode map addresses so we can recover if
error during updating map.

11

Implementing Stable Storage

• Use two disks to implement stable storage
– Problem is when a write (update) corrupts old version,

without completing write of new version
– Solution: Write to one disk first, then write to second after

completion of first

12

LFS versus FFS

• Comparison of creating two small files

13

Issue
Disks are Finite in Size

• File system “cleaner” runs in background
– Recovers blocks that are no longer in use by

consulting current inode map
• Identifies unreachable blocks

– Compacts remaining blocks on disk to form
contiguous segments for improved write
performance

Cleaner
• Uses a combination of threaded log and

copy and compact

14

15

Issue
Recovery

• File system is check-pointed regularly which saves
– A pointer to the current head of the log

– The current Inode Map blocks

• On recovery, simply restart from previous checkpoint.
– Can scan forward in log and recover any updates written after

previous checkpoint

– Write updates to log (no update in place), so previous checkpoint
always consistent

Checkpoint

Location

16

Reliability

• Updated data is written to the log, not in
place.

• Reduces chance of corrupting existing
data.
– Old data in log always safe.

– Crashes only affect recent data
• As opposed to updating (and corrupting) the root

directory.

17

Performance

• Comparison between LFS
and SunOS FS
– Create 10000 1K files
– Read them (in order)
– Delete them

• Order of magnitude
improvement in
performance for small
writes

LFS a clear winner?

• Authors involved in BSD-LFS
– log structured file system for BSD 4.4

– enable direct comparison with BSD-FFS
• including recent clustering additions

• Importantly, a critical examination of
cleaning overhead

18

Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan

”File System Logging Versus Clustering: A Performance Comparison”

Clustering

19

Original Sprite-LFS Benchmarks
Small file

20

Large File Performance
100 Meg file

• Benchmarks
1. Create the file by sequentially writing 8 KB

units.

2. Read the file sequentially in 8 KB units.

3. Write 100 KB of data randomly in 8 KB units.

4. Read 100 KB of data randomly in 8 KB units.

5. Re-read the file sequentially in 8 KB units

21

Large File Performance
100 Meg file

22

Writes
effectively
sequential

Read-ahead
hurts

performance for
random

Read-ahead
improve

performance
sequential

reads

Observations

• Read-ahead helps in BSD sequential
case, but hurts in random.

• Read ahead algorithm is triggered on
successful read-ahead on sequential,
turned off on a miss. Worst case for 8K
reads with 4K blocks.

23

Create performance
• 32 megabytes of data overall,

made up of how ever many
files required to make 32
megs give the file size on the
x-axis

• When the speed of meta-
data operations dominates
(for small files less than a few
blocks or 64 KB), LFS
performance is anywhere
from 4 to 10 times better than
FFS.

• As the write bandwidth of the
system becomes the limiting
factor, the two systems
perform comparably.

24

Read Performance

• Read: Each file is
read in its creation
order.

25

Observations

• For files of less than 64 KB, performance
is comparable in all the file systems.

• At 64 KB, files are composed of multiple
clusters and seek penalties rise.

• In the range between 64 KB and 2 MB,
LFS performance dominates
– because FFS is seeking between cylinder

groups to distribute data evenly.

26

Write Performance
• Each file is rewritten in its

creation order.

• The main difference
between the overwrite test
and the create test is that
FFS need not perform
synchronous disk
operations and LFS must
invalidate dead blocks as
they are overwritten.

• As a result, the
performance of the two
systems is closer with LFS
dominating for files of up to
256 KB and FFS
dominating for larger file
sizes.

27

Delete Performance
• All the files are deleted

• Delete performance is a
measure of metadata
update performance and
the asynchronous
operation of LFS gives it
an order of magnitude
performance advantage
over FFS.

• As the file size increases,
the synchronous writes
become less significant
and LFS provides a factor
of 3-4 better performance.

28

Transaction processing performance.
• A random access

benchmark

• Without cleaner, LFS
performs better due to
sequential writes.

• When the cleaner runs,
its performance is
comparable to FFS.

29

LFS not a clear winner

• When LFS cleaner overhead is ignored, and FFS runs on a new,
unfragmented file system, each file system has regions of performance
dominance.

– LFS is an order of magnitude faster on small file creates and deletes.

– The systems are comparable on creates of large files (one-half megabyte or more).

– The systems are comparable on reads of files less than 64 kilobytes.

– LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS
is comparable.

– LFS write performance is superior for files of 256 kilobytes or less.

– FFS write performance is superior for files larger than 256 kilobytes.

• Cleaning overhead can degrade LFS performance by more than 34% in a
transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.

30

Take-away

• When meta-data operation are the bottle
neck, LFS wins.

• Cleaning over-head degrades LFS
performance significantly as utilisation
rises.

• LFS Ideas live on in more recent
“snapshot”-base file systems.
– E.g., ZFS and BTRFS

– Garbage is a feature
31

Journaling file systems

• Hybrid of
– I-node based file system

– Log structured file system (journal)

• Two variations
– log only meta-data to journal (default)

– log-all to journal

• Need to write-twice (i.e. copy from journal to i-
node based files)

• Example – ext3
– Main advantage is guaranteed meta-data consistency

32

