I/O Management
Intro

Chapter 5

THE UNIVERSITY OF 1
NEW SOUTH WALES
L

Learning Outcomes

* A high-level understanding of the
properties of a variety of I/O devices.

* An understanding of methods of
interacting with I/O devices.

THE UNIVERSITY OF 2
NEW SOUTH WALES
L

THE UNIVERSITY OF 3
NEW SOUTH WALES
L

I/O Devices

* There exists a large variety of I/0 devices:
— Many of them with different properties

— They seem to require different interfaces to
manipulate and manage them
» We don’t want a new interface for every device
+ Diverse, but similar interfaces leads to code
duplication
+ Challenge:
— Uniform and efficient approach to 1/0

THE UNIVERSITY OF 4
NEW SOUTH WALES
L

» Logical position of device drivers
is shown here

« Drivers (originally) compiled into
the kernel

Device Drivers

User process

L User
— Device installers were space

technicians

— Including OS/161 {

rarely changed

» Nowadays they are dynamically el T
loaded when needed ‘ | | . ‘ R
— Linux modules

— Number and types of devices ‘ 12

— Typical users (device installers) rardware

Device Drivers

 Drivers classified into similar categories
— Block devices and character (stream of data) device
» OS defines a standard (internal) interface to
the different classes of devices

— Example: USB HID (human interface device) class
specifications
« human input devices follow a set of rules making it easier to
design a standard interface.

can’t build kernels I
— Number and types vary greatly — oevices
« Even while OS is running (e.g
hot-plug USB devices)
E THE UNIVERSITY OF 5
NEW SOUTH WALES
L

THE UNIVERSITY OF 6
NEW SOUTH WALES
e

USB Device Classes

Class
o0n Device

Base | Descriptor | Description
Usage

oth Iterface
0zh Both

03 intertace

05h Interface

06h interface

o7h interface

o8 Interface | Mass Storage

0sh Device | Hub

0An interface | CDC-Data

0Bh Interface | Smart Card

0Dh interface | Content Security
OEn interface | Video

OFh Interface | Personal Healthcare
on interface | AudiolVideo Devices
) Both | Diagnostic Device
Eon interface | Wireless Controller
EFn Both | Miscellan

FEn Interface | Application Specific
FFh Both | Vendor Specific

THE UNIVERSITY OF 7
NEW SOUTH WALES

I/O Device Handling

» Data rate

— May be differences of several orders of
magnitude between the data transfer rates

— Example: Assume 1000 cycles/byte 1/0O
» Keyboard needs 10 KHz processor to keep up
* Gigabit Ethernet needs 100 GHz processor.....

=
7

THE UNIVERSITY OF 8
NEW SOUTH WALES
L

L

Sample Data Rates

Device Data rate

Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KBJsec
Telephone channel 8 KBJsec
Dual ISDN lines 16 KB/sec

| Laser printer 100 KB/sec
Scanner 400 KB/sec
Classic Ethernet 1.25 MB/sec
USB (Universal Serial Bus) 1.5 MB/sec
Digital camcorder 4 MB/sec

| IDE disk 5 MB/sec
40x CD-ROM 6 MB/sec
Fast Ethernet 12.5 MB/sec
ISA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec
FireWire (IEEE 1394) 50 MB/sec
XGA Monitor 60 MB/sec
SONET OC-12 network 78 MB/sec
SCS| Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec USB 3.0 625 MBs (5 Gbis)
Ultrium tape 320 MB/sec Thunderbolt 2.5GB/sec (20 Gbls)
PCl bus 528 MB/sec PCle 3.0 x16 16GBIs
Sun Gigaplane XB backplane 20 GB/sec

THE UNIVERSITY OF 9

NEW SOUTH WALES

9

Device Drivers

* Device drivers job

— translate request through the device-independent
standard interface (open, close, read, write) into
appropriate sequence of commands (register
manipulations) for the particular hardware

— Initialise the hardware at boot time, and shut it down
cleanly at shutdown

THE UNIVERSITY OF 10
NEW SOUTH WALES
L

10

=
11

Device Driver

» After issuing the command to the device, the
device either
— Completes immediately and the driver simply returns
to the caller
— Or, device must process the request and the driver
usually blocks waiting for an interrupt indicating 1/0
completion.
 Drivers are thread-safe as they can be called
by another process while a process is already
blocked in the driver.
— Thread-safe: Synchronised....

THE UNIVERSITY OF 11
NEW SOUTH WALES

Device-Independent 1/O
Software
» There is commonality between drivers of
similar classes
+ Divide I/O software into device-dependent
and device-independent I/O software
+ Device independent software includes
— Buffer or Buffer-cache management
— TCP/IP stack
— Managing access to dedicated devices
— Error reporting

THE UNIVERSITY OF 12
NEW SOUTH WALES
e

Driver < Kernel Interface

» Major Issue is uniform interfaces to devices and
kernel
— Uniform device interface for kernel code

« Allows different devices to be used the same way

— No need to rewrite file-system to switch between SCSI, IDE or
RAM disk

« Allows internal changes to device driver with fear of breaking
kernel code
— Uniform kernel interface for device code

« Drivers use a defined interface to kernel services (e.g.
kmalloc, install IRQ handler, etc.)

« Allows kernel to evolve without breaking existing drivers
— Together both uniform interfaces avoid a lot of

Accessing I/O Controllers

Two address One address space Two address spaces
OxFFFF W Memory
1O ports
0 1 1
(a) (b) ()

a) Separate /0O and memory space
— 1/O controller registers appear as I/O ports
— Accessed with special I/O instructions
b) Memory-mapped /O
— Controller registers appear as memory
— Use normal load/store instructions to access

(a) A single-bus architecture
(b) A dual-bus memory architecture

THE UNIVERSITY OF 15
NEW SOUTH WALES

L . . c) Hybrid
programming implementing new interfaces — " X86 has both ports and memory mapped /O
« Retains compatibility as drivers and kernels change over
time.
E THE UNIVERSITY OF 13 E THE UNIVERSITY OF 14
NEW SOUTH WALES NEW SOUTH WALES
L L
13 14
CPU reads and writes of memory o HEGRaT
go over this high-bandwidth bus NPE A R— MI S—
Ethernet MAC o rmance Bus
Queve Status Bus
— s I ——
Ethernet MAC
CPU Memory| 1o cPU Memory, 1o i@b
L — Tk
\ This memory port is
Alladdresses (memory Bus to allow I/O devices
and I/0) go here
access to memory
@ (b)

THE UNIVERSITY OF 16
NEW SOUTH WALES
L

Interrupts

Interrupt 1. Device is finished
CPLU 3.CPU acks -controller
interrupt
J Y
—
2. Controller — Print
issues F rinter

| | interrupt | |

» Devices connected to an Interrupt Controller via
lines on an 1/O bus (e.g. PCI)

* Interrupt Controller signals interrupt to CPU and
is eventually acknowledged.

» Exact details are architecture specific.

I/0O Interaction

THE UNIVERSITY OF 17
NEW SOUTH WALES
e

THE UNIVERSITY OF 18
NEW SOUTH WALES
e

Issue Read
command to PU — IO
1O module

Programmed 1/O

Read status

» Also called polling, or busy o 10 Iv0—>cn.v

waiting
* 1/0 module (controller) performs
the action, not the processor

» Sets appropriate bits in the I/O
status register

No interrupts occur

* Processor checks status until
operation is complete
— Wastes CPU cycles

Error
condition

from VO

10 — CPU
Module

.

into memory

Write rd
A |CPU — memor.

Interrupt-Driven 1/O

Issue Read PU - 1O
command to _y Do something
1O module else

» Processor is interrupted when 1/0

Read status

THE UNIVERSITY OF
NEW SOUTH WALES Next instruction
] (Fi} L0,

module (controller) ready to or 10 e
module /O — CPU
exchange data
» Processor is free to do other work comon
» No needless waiting e
. from 'O L0 — CPU
» Consumes a lot of processor time Modle
because every word read or .
H N0 memor) -+ inéiiary
written passes through the ! i
processor
B L s e
(b) Interrupt-driven VO
20

Direct Memory Access

« Transfers data directly between Memory and Device
« CPU not needed for copying

Direct Memory Access

» Transfers a block of data
directly to or from memory Lﬁf::;':t;i::‘m.‘dl_[ffnf,“iﬁ,m
- Aninterrupt is sent when =~ m—l "
the task is complete Read status
of DMA
* The processor is only e
involved at the beginning
and end of the transfer

=== Interrupt

DMA — CPU

Next instruction

(c) Direct memory access

DMA .
Controller in e Memory| | Devic
Device | I I—I
Separate .
DMA CpPU Memory Device
Controller | n I
E MW SOV WAL -
L
21

THE UNIVERSITY OF 22
NEW SOUTH WALES
L

DMA Considerations

v Reduces number of interrupts
— Less (expensive) context switches or kernel entry-exits
x Requires contiguous regions (buffers)
— Copying
— Some hardware supports “Scatter-gather”
* Synchronous/Asynchronous
« Shared bus must be arbitrated (hardware)
— CPU cache reduces (but not eliminates) CPU need for bus

CPU Memory| Device

l It It

THE UNIVERSITY OF 23
NEW SOUTH WALES
e

The Process to Perform DMA
Transfer

1. device driver is told to
transfer disk data to
buffer at address X CPU

. DMA controller transfers 2. device driver tells disk
X,

bytes to buffer controller to transfer C
increasing memory bytes from disk to buffer
address and decreasing at address X
CuntilC=0
. when C = 0, DMA DMA/bus/interrupt f; — x
interrupts CPU to signal controller CEUmemory bus mempny | buffer

transfer completion

; . L PCI bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA

controller
) &

IDE disk controller

THE UNIVERSITY OF 24
NEW SOUTH WALES
e

