/O Management
Intro

Chapter 5

SR THE UNIVERSITY OF
; NEW SOUTH WALES

Learning Outcomes

* A high-level understanding of the
properties of a variety of |/O devices.

* An understanding of methods of
interacting with I/O devices.

LB THE UNIVERSITY OF
NEW SOUTH WALES

/O Devices

* There exists a large variety of I/O devices:
— Many of them with different properties

— They seem to require different interfaces to
manipulate and manage them
« We don’t want a new interface for every device

* Diverse, but similar interfaces leads to code
duplication

» Challenge:
— Uniform and efficient approach to |/O

THE UNIVERSITY OF 4

f‘. NEW SOUTH WALES

e
W[

,% 4 9
Sre

Logical position of device drivers
Is shown here

Drivers (originally) compiled into
the kernel
— Including OS/161

— Device installers were
technicians

— Number and types of devices
rarely changed
Nowadays they are dynamically
loaded when needed
— Linux modules

— Typical users (device installers)
can’t build kernels
— Number and types vary greatly

» Even while OS is running (e.g
hot-plug USB devices)

Device Drivers

User process

i 4
User

User < program
space

AN S

Y

Rest of the operating system

Kernel 4
space
¥ Y 4
Printer Camcorder CD-ROM
driver driver driver
- A 4 Y Y
Hardware | Printer controller | |Camcorder controllerl |CD-ROM controllerl
Devices
o})

Device Drivers

* Drivers classified into similar categories
— Block devices and character (stream of data) device

* OS defines a standard (internal) interface to
the different classes of devices
— Example: USB HID (human interface device) class
specifications

« human input devices follow a set of rules making it easier to
design a standard interface.

USB Device Classes

Base Descriptor Description
Class Usage
00h Device Use class information in the Interface Descriptors
01h Interface Audio
02h Both Communications and CDC Control
03h Interface HID (Human Interface Device)
05h Interface Physical
06h Interface Image
07h Interface Printer
08h Interface Mass Storage
09h Device Hub
0Ah Interface CDC-Data
0Bh Interface Smart Card
0Dh Interface Content Security
OEh Interface Video
OFh Interface Personal Healthcare
10h Interface Audio/Video Devices
DCh Both Diagnostic Device
EOh Interface Wireless Controller
EFh Both Miscellaneous
FEh Interface Application Specific
FFh Both Vendor Specific

/O Device Handling

 Data rate

— May be differences of several orders of
magnitude between the data transfer rates

— Example: Assume 1000 cycles/byte I/O
» Keyboard needs 10 KHz processor to keep up
» Gigabit Ethernet needs 100 GHz processor.....

Sample Data Rates

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Telephone channel 8 KB/sec
Dual ISDN lines 16 KB/sec
Laser printer 100 KB/sec
Scanner 400 KB/sec
Classic Ethernet 1.25 MB/sec
USB (Universal Serial Bus) 1.5 MB/sec
Digital camcorder 4 MB/sec
IDE disk 5 MB/sec
40x CD-ROM 6 MB/sec
Fast Ethernet 12.5 MB/sec
ISA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec
FireWire (IEEE 1394) 50 MB/sec
XGA Monitor 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Giggbit Ethernet 125 MB/sec USB 3.0 625 MB/s (5 Gbls)
Ultrium tape 320 MB/sec Thunderbolt 2.5GB/sec (20 Gbrs)
PCI bus 528 MB/sec PCle v3.0 x16 16GB/s
Sun Gigaplane XB backplane 20 GB/sec
THE UNIVERSITY OF 9

NEW SOUTH WALES

Device Drivers

* Device drivers job

— translate request through the device-independent
standard interface (open, close, read, write) into
appropriate sequence of commands (reglster
manipulations) for the particular hardware

— Initialise the hardware at boot time, and shut it down
cleanly at shutdown

T 10
@il NEW SOUTH WALES

Device Driver

» After issuing the command to the device, the
device either

— Completes immediately and the driver simply returns
to the caller

— Or, device must process the request and the driver

usually blocks waiting for an interrupt indicating 1/O
completion.

* Drivers are thread-safe as they can be called

by another process while a process is already
blocked in the driver.

— Thread-safe: Synchronised....

THE UNIVERSITY OF 11

f‘. NEW SOUTH WALES

Device-Independent I/O

Software

* There is commonality between drivers of
similar classes

* Divide I/O software into device-dependent
and device-independent |/O software

* Device independent software includes

— Buffer or Buffer-cache management
— TCP/IP stack

— Managing access to dedicated devices
—, — Error reporting

CEL| THE UNIVERSITY OF 12
NEW SOUTH WALES

Driver < Kernel Interface

* Major Issue is uniform interfaces to devices and
kernel

— Uniform device interface for kernel code

 Allows different devices to be used the same way

— No need to rewrite file-system to switch between SCSI, IDE or
RAM disk

 Allows internal changes to device driver with fear of breaking
kernel code
— Uniform kernel interface for device code

 Drivers use a defined interface to kernel services (e.qg.
kmalloc, install IRQ handler, etc.)

» Allows kernel to evolve without breaking existing drivers
— Together both uniform interfaces avoid a lot of
programming implementing new interfaces

» Retains compatibility as drivers and kernels change over
time.

13

Accessing |/O Controllers

Two address One address space Two address spaces

OxFFFF... Memory

I/O ports

/

(a) (b) (c)

a) Separate /0O and memory space

— |/O controller registers appear as /O ports

— Accessed with special I/O instructions
b) Memory-mapped I/O

— Controller registers appear as memory

— Use normal load/store instructions to access
c) Hybrid

— Xx86 has both ports and memory mapped I/O

0

< i
[T
<!

L THE UNIVERSITY OF 14
B NEW SOUTH WALES

Bus Architectures

CPU reads and writes of memory
go over this high-bandwidth bus

/

CPU Memory l/O CPU Memory l/O
&
] AN |
\ k N This memory port is

All addresses (memory
and |/O) go here

(a) (b)
(a) A single-bus architecture
— (b) A dual-bus memory architecture

JEL| THE UNIVERSITY OF 15
%l NEW SOUTH WALES

Bus to allow 1/O devices
access to memory

Intel IXP420

Mil-0 = Ethernet

NPE A

Ethernet MAC

Ethernet

NPE B
Ethernet MAC

133.32 MHz x 32 bits North Advance High-

Queue Status Bus

Queus
Manager

SDRAM
Controller

8 KB SRAM B-256 MB

Performance Bus

Intel XScale® Core

2664 00/

513F1H£

2 KB Min-Data Cache

16

Interrupts

Interrupt 1. Device is finished

CPU 3 CPU acks controller

interrupt i@ Disk

2. Controller
LY issues

W

* Devices connected to an Interrupt Controller via
ines on an |/O bus (e.g. PCI)

* Interrupt Controller signals interrupt to CPU and
IS eventually acknowledged.

« Exact details are architecture specific.

11

~_ Printer

\,‘

17

/O Interaction

18

[ssue Read

Programmed /O amw oo

'O module

Read status

* Also called polling, or busy of 1O

/O — CPU

waiting R
* 1/O module (controller) performs m Frror
the action, not the processor RH:‘“S condition
« Sets appropriate bits in the 1/O R
status register from 10§10 > CPU
* No interrupts occur
» Processor checks status until ino mermory [JoPU = memory

operation is complete
— Wastes CPU cycles

Yes

=
g THE UNIVERSITY OF h
=i NEW SOUTH WALES Next instruction

{a) Programmed L0

||
Bed

Interrupt-Driven |/O
- Processor is interrupted when 1/0 —I:m"'e o

module (controller) ready to of 10
exchange data

. Chec
* Processor is free to do other work

. Ready
* No needless waiting R

from LO /O — CPU

 Consumes a lot of processor time Module

= = = |nferrupt

'O - CPU

Error
condition

because every word read or L. |
ertten paSSeS through the into memory)
processor

-:m- THE UNIVERSITY OF . S

NEW SOUTH WALES (b} Interrupt-driven /O

Direct Memory Access

« Transfers data directly between Memory and Device
« CPU not needed for copying

DMA CPU Memory, | Devic
Controller in
Device
Segarz\lte CPU Memory Device

Controller

21

< i
! .

Direct Memory Access

 Transfers a block of data

: ey PLT — DMA
directly to or from memory I _, Do something
]] WO module @ T else
* An interrupt is sent when

the task is complete

* The processor is only
involved at the beginning Nextinstruction
and end of the transfer) irect memory access

Eead status

of DMA
module

=== [nterrupt

DMA — CPU

|
[T
%

L THE UNIVERSITY OF 22

DMA Considerations

v" Reduces number of interrupts

— Less (expensive) context switches or kernel entry-exits
x Requires contiguous regions (buffers)

— Copying

— Some hardware supports “Scatter-gather”
« Synchronous/Asynchronous

« Shared bus must be arbitrated (hardware)
— CPU cache reduces (but not eliminates) CPU need for bus

CPU Memory Device

I [

23

The Process to Perform DMA
Transfer

1. device driver is told to
transfer disk data to
buffer at address X

5. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C |
increasing memory bytes from disk to buffer cache
address and decreasing at address X
CuntiiC=0

. when C = 0, DMA DMA/bus/interrupt }—CPU memory bus— | memory X buffer

interrupts CPU to signal controller
transfer completion

PCI bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA
controller

IDE disk controller

B,
W[
%

L] THE UNIVERSITY OF
8 NEW SOUTH WALES

