
1

I/O Management
Intro

Chapter 5

Learning Outcomes

• A high-level understanding of the
properties of a variety of I/O devices.

• An understanding of methods of
interacting with I/O devices.

2

3

4

I/O Devices

• There exists a large variety of I/O devices:
– Many of them with different properties

– They seem to require different interfaces to
manipulate and manage them

• We don’t want a new interface for every device

• Diverse, but similar interfaces leads to code
duplication

• Challenge:
– Uniform and efficient approach to I/O

5

Device Drivers
• Logical position of device drivers

is shown here

• Drivers (originally) compiled into
the kernel
– Including OS/161

– Device installers were
technicians

– Number and types of devices
rarely changed

• Nowadays they are dynamically
loaded when needed
– Linux modules

– Typical users (device installers)
can’t build kernels

– Number and types vary greatly
• Even while OS is running (e.g

hot-plug USB devices)

6

Device Drivers

• Drivers classified into similar categories
– Block devices and character (stream of data) device

• OS defines a standard (internal) interface to
the different classes of devices
– Example: USB HID (human interface device) class

specifications
• human input devices follow a set of rules making it easier to

design a standard interface.

USB Device Classes
Base
Class

Descriptor
Usage

Description

00h Device Use class information in the Interface Descriptors

01h Interface Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific

7

8

I/O Device Handling

• Data rate
– May be differences of several orders of

magnitude between the data transfer rates

– Example: Assume 1000 cycles/byte I/O
• Keyboard needs 10 KHz processor to keep up

• Gigabit Ethernet needs 100 GHz processor…..

9

Sample Data Rates

USB 3.0 625 MB/s (5 Gb/s)
Thunderbolt 2.5GB/sec (20 Gb/s)
PCIe v3.0 x16 16GB/s

10

Device Drivers

• Device drivers job
– translate request through the device-independent

standard interface (open, close, read, write) into
appropriate sequence of commands (register
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down
cleanly at shutdown

11

Device Driver
• After issuing the command to the device, the

device either
– Completes immediately and the driver simply returns

to the caller
– Or, device must process the request and the driver

usually blocks waiting for an interrupt indicating I/O
completion.

• Drivers are thread-safe as they can be called
by another process while a process is already
blocked in the driver.
– Thread-safe: Synchronised….

12

Device-Independent I/O
Software

• There is commonality between drivers of
similar classes

• Divide I/O software into device-dependent
and device-independent I/O software

• Device independent software includes
– Buffer or Buffer-cache management

– TCP/IP stack

– Managing access to dedicated devices

– Error reporting

13

Driver  Kernel Interface
• Major Issue is uniform interfaces to devices and

kernel
– Uniform device interface for kernel code

• Allows different devices to be used the same way
– No need to rewrite file-system to switch between SCSI, IDE or

RAM disk

• Allows internal changes to device driver with fear of breaking
kernel code

– Uniform kernel interface for device code
• Drivers use a defined interface to kernel services (e.g.

kmalloc, install IRQ handler, etc.)
• Allows kernel to evolve without breaking existing drivers

– Together both uniform interfaces avoid a lot of
programming implementing new interfaces

• Retains compatibility as drivers and kernels change over
time.

14

Accessing I/O Controllers

a) Separate I/O and memory space
– I/O controller registers appear as I/O ports
– Accessed with special I/O instructions

b) Memory-mapped I/O
– Controller registers appear as memory
– Use normal load/store instructions to access

c) Hybrid
– x86 has both ports and memory mapped I/O

15

Bus Architectures

(a) A single-bus architecture
(b) A dual-bus memory architecture

16

Intel IXP420

17

Interrupts

• Devices connected to an Interrupt Controller via
lines on an I/O bus (e.g. PCI)

• Interrupt Controller signals interrupt to CPU and
is eventually acknowledged.

• Exact details are architecture specific.

I/O Interaction

18

19

• Also called polling, or busy
waiting

• I/O module (controller) performs
the action, not the processor

• Sets appropriate bits in the I/O
status register

• No interrupts occur
• Processor checks status until

operation is complete
– Wastes CPU cycles

Programmed I/O

20

Interrupt-Driven I/O

• Processor is interrupted when I/O
module (controller) ready to
exchange data

• Processor is free to do other work

• No needless waiting

• Consumes a lot of processor time
because every word read or
written passes through the
processor

21

Direct Memory Access
• Transfers data directly between Memory and Device
• CPU not needed for copying

CPU Memory Device

CPU Memory Device

DMA
Controller

DMA
Controller

DMA
Controller in

Device

Separate
DMA

Controller

22

Direct Memory Access

• Transfers a block of data
directly to or from memory

• An interrupt is sent when
the task is complete

• The processor is only
involved at the beginning
and end of the transfer

23

DMA Considerations
 Reduces number of interrupts

– Less (expensive) context switches or kernel entry-exits

 Requires contiguous regions (buffers)
– Copying
– Some hardware supports “Scatter-gather”

• Synchronous/Asynchronous
• Shared bus must be arbitrated (hardware)

– CPU cache reduces (but not eliminates) CPU need for bus

CPU Memory Device

24

The Process to Perform DMA
Transfer

