Virtual Memory

Learning Outcomes

* An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.

=]
0] THE UNIVERSITY OF
NEW SOUTH WALES

]
3

Memory Management Unit
(or TLB)

The CPU sends virtual
CPU addresses to the MMU

package /
CPU 1>~
Memory M Disk
- _ management emory controller
unit

\ I
_R\

e -

The MMU sends physical
addresses to the memory

The position and function of the MMU

SR THE UNIVERSITY OF 3
1 NEW SOUTH WALES

Virtual Address/|

Space

* Virtual Memory

s

Divided into equal-
sized pages
A mapping is a
translation between

* A page and a frame

* A page and null
Mappings defined at
runtime

« They can change

Address space can
have holes

Process does not
have to be
contiguous in
physical memory

Ny
O =N WU O

D O U \ G N "G
O oW AOO

Page-based VM

* Physical Memory
— Divided into

equal-sized
frames

Physical Address
Space 4

Virtual Addres
Space

Kernel

Stack

Shared
Libraries

BSS

(heap)

Data |\

Text
SCod

- ..,»I THE NIVERSIT)OF
NEW SOUTH WALES

B

v

Typical Address
Space Layout

Stack region is at top,
and can grow down

Heap has free space to
grow up

Text is typically read-only

Kernel is in a reserved,
protected, shared region
0-th page typically not
used, why?

/

Virtual Address /Programmer’s perspective:

logically present
System’s perspective: Not
mapped, data on disk

Space

* A process may
be only partially
resident

— Allows OS to
store individual
pages on disk

— Saves memory
for infrequently
used data & code

* What happens if
we aCCessS Nnon-
resident
memory?

e

Physical Address
Space 6

Proc 1 Address Proc 2 Address

Space TG ! > Space
Currently L e ! v
running ~—__ | é i =
|
: : Physical
: I Address Spage
|
! K
! ! U
! : E T Y
I | :-
: I z| [
| :
i Disk
: M
; L
K
o O 7

Page Faults

» Referencing an invalid page triggers a page fault
» An exception handled by the OS

« Broadly, two standard page fault types
— lllegal Address (protection error)
 Signal or Kill the process
— Page not resident
* Get an empty frame
» Load page from disk

» Update page (translation) table (enter frame #, set valid bit, etc.)
» Restart the faulting instruction

Virtual Address

Space

Page table for
resident part of
address space

[T
= 7

15
14
13
12
11
10

(@

O =-~DNWPH,OIO N O

Page
Table
7
6
5
4
E|3
2
1 Physical
0 Address Space

15
14
13
12

SoNMwWhAION®O©IDD

Shared Pages

 Private code and data e+ Shared code

— Each process has own — Single copy of code
copy of code and data shared between all

— Code and data can processes executing it
appear anywhere in — Code must not be self
the address space modifying

— Code must appear at
same address in all
processes

Bl THE UNIVERSITY OF 10

BESE

Proc 1 Address

Space

Two (or more)
processes
running the

same program
and sharing

the text section

Page
tv Table

N —H C

Physical
Address Spage

Z | X

X|<IN

<|Z

Proc 2 Address
Space

Page

Table 11

N

N

Page Table Structure

» Page table is (logically) an array of
frame numbers

— Index by page number

« Each page-table entry (PTE) also has
other bits

Caching
disabled Modified Present/absent

[/ /

% | \ \ | Page frame number

Referenced Protection

Page

CEL! THE UNIVERSITY OF Table 12
NEW SOUTH WALES

N

N

PTE Attributes (bits)

Present/Absent bit

— Also called valid bit, it indicates a valid mapping for the page

Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

Reference bit
— Indicates the page has been accessed

Protection bits

— Read permission, Write permission, Execute permission
— Or combinations of the above

Caching bit

— Use to indicate processor should bypass the cache when
accessing memory

« Example: to access device registers or memory

JEL| THE UNIVERSITY OF 13

Address Translation

» Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

 In paging system, translation involves
replace page number with a frame number

=
R THE UNIVERSITY OF 1
NEW SOUTH WALES

Virtual Memory Summary

virtual and physical mem chopped up in page%frames

-— 15-bi l Memory addresy—
\aum 11n0}:nunnu1011u‘“§t‘ér
- m\ R
e programs use virtual l = N

addresses . .
- virtual to physical mapping .
by MMU E
first check if page present b

(present/absent bit)

-if yes: address in page table form
MSBs in physical address

— y 110 7
-if no: bring in the page from disk ({ _://9

)\
- \1 \I Al 1
nnunannuununﬁunuuéﬂ o{o|o|o|o|o[1]o[1|1]o| 'mPut
=20 register
g THE UNIVERSITY OF — _
B - D L1 i - -hit —
&%l NEW SOUTH WALES 0-bit virtual page 12-bit offset
Pl - 32-hit virtual address

Page Tables

 Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size

— How many page table entries do we need for one
process?

7

) e

9 7 I

16

Page Tables

 Assume we have
— 64-Dbit virtual address (humungous address space)
— 4 KByte page size

— How many page table entries do we need for one
process?

* Problem:
— Page table is very large

— Access has to be fast, lookup for every memory
reference

— Where do we store the page table?
* Registers?

» Main memory? &——~

17

Page Tables

« Page tables are implemented as data structures in main
memory
* Most processes do not use the full 4GB address space
— e.g.,, 0.1 -1 MB text, 0.1 — 10 MB data, 0.1 MB stack
 We need a compact representation that does not waste
space
— But is still very fast to search
* Three basic schemes

— Use data structures that adapt to sparsity M
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

JEL| THE UNIVERSITY OF 5

Two-level Page
Table

« 27 _level
page tables

Top-level

representing
unmapped

Bits 10

pages are not

PT1/| PT2

allocated

—
— Null in the S
top-level

page table

OxTF I E 17~

[T
%

QeCora-ievel

LiJ Pl iygy

RERRRRE

WAoo 7
)y

/A AR

—t

|

Page
table for
[the top
4M of
memory

7

To
pages

Two-level Translation

Virtual Address

10 hits | 10 bhits | 12 bits Frame # Offset

Koot page
table pir

Page
Frame

d4-kbvie page
Root page table table (contains
= y e 24 PTEs)
(contains 1024 PTEs) 1024 PTEs)

L TN

Program Paging Mechanism Main Memory

Example Translations

LB THE UNIVERSITY OF
] NEW SOUTH WALES

Alternative: Inverted Page Table

PID VPN offset

Index | PID VPN ctrl| next

Hash Anchor Table
(HAT)

0
1
(v é =
4
5
_ 6

[T
%

IPT: entry for each physical frame

| THE UNIVERSITY OF
NEW SOUTH WALES

Alternative: Inverted Page Table

PID VPN offset

0 0x5
Index| PID | VPN |ctrl| next
Hash Anchor Table 0
(HAT) 1
@ =1 | Ox1A 0x40C
Y
0x40C| O Ox5 0x0
0x40D
2
\« ppn offset
-fn- THE UNIVERSITY OF ~ > 0x40C
NEW SOUTH WALES

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's

a frame table).

* Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault

24

Properties of IPTs

* IPT grows with size of RAM, NOT virtual address space

 Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

* Saves a vast amount of space (especially on 64-bit
systems)

« Used in some IBM and HP workstations

JEL| THE UNIVERSITY OF 25

Given n processes

* how many page tables will the system
have for
— ‘normal’ page tables
— inverted page tables?

=]
0] THE UNIVERSITY OF
NEW SOUTH WALES

||
]

Another look at sharing...

] THE UNIVERSITY OF
NEW SOUTH WALES

Proc 1 Address Proc2 Address
)ace

Physical
Address Spage

Two (or more)
processes
running the

same program
and sharing

the text section

28

g
[T
e 4

< i
[T
! .

Improving the IPT: Hashed
Page Table

» Retain fast lookup of IPT
— A single memory reference in best case
* Retain page table sized based on physical
memory size (not virtual)
— Enable efficient frame sharing
— Support more than one mapping for same frame

29

Hashed Page Table

PID VPN offset

HPT: Frame number stored in table
-zn- THE UNIVERSITY OF
i NEW SOUTH WALES

Hashed Page Table

PID VPN offset

0 0x5
— PID| VPN PFN |[ctrl| next

0 0x5 Ox42 0x0 ~

OO WN -

1 Ox1A | 0x13 0x3

ppn offset

Ox42

Sharing Example

PID VPN offset

0 0x5

OO WN -

BL| THE UNIVERSITY OF
B2 NEW SOUTH WALES

PID| VPN PEN | ctrl [next
1 0x5 0x42 0x0

0 Ox5 0x42 0x3
ppn offset

Ox42

Sizing the Hashed Page Table

 HPT sized based on physical memory size

* With sharing

— Each frame can have more than one PTE

— More sharing increases number of slots used
* Increases collision likelihood

« However, we can tune HPT size based on:

* Physical memory size
* Expected sharing
» Hash collision avoidance.

— HPT a power of 2 multiple of number of physical
memory frame

] THE UNIVERSITY OF
NEW SOUTH WALES

33

VM Implementation Issue

e Performance?

— Each virtual memory reference can cause two
physical memory accesses
* One to fetch the page table entry
* One to fetch/store the data
= Intolerable performance impact!!

e Solution:

— High-speed cache for page table entries (PTES)
 Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
» Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

34

el TLB operation

devicelll

) Secondary
Main Memory Memory

) ")

Virtual Address

Page # | Offset

Translation
Lookaside Buffer

—
—
s TLB hit I
I Oflsel
_..' o
S
Data Load
Pagefl'able S.tl'UCtU.I’e page
IN Main
memo —
TLB miss ry J\

"

h J ¥
Frame # Offset

Real Address _/\

Page fault

Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

 |If matching PTE found (7LB hit), the address is
translated

* Otherwise (TLB miss), the page number is used
to index the process’s page table
— |If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

B THE UNIVERSITY OF 30
@8 NEW SOUTH WALES

TLB properties

« Page table is (logically) an array of frame
numbers

 TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V [W

37

TLB properties

« TLB may or may not be under direct OS control
— Hardware-loaded TLB

e On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS, Itanium (optionally)
» TLB size: typically 64-128 entries

« Can have separate TLBs for instruction fetch
and data access

 TLBs can also be used with inverted page tables
(and others)

38

TLB and context switching

 TLB is a shared piece of hardware
* Normal page tables are per-process (address space)

 TLB entries are process-specific

— On context switch need to flush the TLB (invalidate all
entries)
* high context-switching overhead (Intel x86)

— or tag entries with address-space ID (ASID)
« called a tagged TLB
 used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits

B THE UNIVERSITY OF 39

TLB effect

« Without TLB

— Average number of physical memory
references per virtual reference

=2
» With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99"1+0.017*2
=1.01

THE UNIVERSITY OF

‘—’f. NEW SOUTH WALES

40

Recap - Simplified Components of
Virtual Address Spaces VM SyStemageTablesfors

(3 processes) / processes Frame Table

ey

l= :
i

Frame Pool

CPU

TLB

Physical Memory

BT THE UNIVERSITY OF 41
| NEW SOUTH WALES

Recap - Simplified Components of
VM System

Virtual Address Spaces
(3 processes)

THE UNIVERSITY OF
NEW SOUTH WALES

CPU

TLB

Inverted Page

Q‘ \%((\

N E

/ Table

<
Aw/v
Qe

Frame Pool

Physical Memory

42

Recap - Simplified Components of
VM System

Virtual Address Spaces Hashed Page

(3 processes) Table Frame Table
|
N j o
Vet
’\@6\&\\6
CPU / |
TLB
2
Frame Pool

Physical Memory

BT THE UNIVERSITY OF 43
£ NEW SOUTH WALES

MIPS R3000 TLB

31 G : I
VPN ASID (

EntryHi Register (TLE key fields)

31 12 11 10 G 8] I
PFN [\ [\ (5 (0

EntrylLo Register (TLE data fields)

* N = Not cacheable
* D = Dirty = Write protect

* G = Global (ignore ASID
in lookup)

 V =valid bit
e 64 TLB entries

* Accessed via software through
Cooprocessor 0 registers

— EntryHi and EntryLo

44

R3000 Address
Space Layout

* ksegO:
— 512 megabytes

— Fixed translation window to
physical memory

« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical

« TLB not used
— Cacheable
— Only kernel-mode accessible
— Usually where the kernel code is

placed
B THE UNIVERSITY OF Physical Memory
@l NEW SOUTH WALES

Oxffffffff

0xC0000000

0xA0000000

0x00000000

kKuseg

R3000 Address
Space Layout

0xC0000000
* Kkusegq:
~ 2 gigabytes 0xA0000000
— TLB translated (mapped) PR
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode OXSOOOOOQO
accessible /]
— Page size is 4K
= THE UNIVERSITY OF \V

B NOW SOUTH WALES

OXFFFFFFFF

0x00000000

kKuseg

OxFFFFFFFF

R3000 Address
Space Layout 000000

— Switching processes
switches the translation 0xA0000000
(page table) for kuseg

0x80000000

Proc 1 Proc 2 Proc 3
kuseg kuseg kuseg

0x00000000

R3000 Address

Space

» kseg1:
— 512 megabytes
— Fixed translatio

Layout

n window to

physical memory

« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
— NOT cacheable

— Only kernel-mode accessible

— Where devices
boot ROM)

B
Ll THE UNIVERSITY OF
NEW SOUTH WALES

[]
o

are accessed (and

JZPhysical Memory

Oxffffffff

0xC0000000

0xA00000

0x800Q0000

0x00000000

kKuseg

