Virtual Memory




Learning Outcomes

* An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.
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Memory Management Unit
(or TLB)

The CPU sends virtual
CPU addresses to the MMU
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Memory M Disk
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The MMU sends physical
addresses to the memory

The position and function of the MMU
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Virtual Address/|

Space

* Virtual Memory

s

Divided into equal-
sized pages
A mapping is a
translation between

* A page and a frame

* A page and null
Mappings defined at
runtime

« They can change

Address space can
have holes

Process does not
have to be
contiguous in
physical memory
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Page-based VM

* Physical Memory
— Divided into

equal-sized
frames

Physical Address
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Virtual Addres
Space

Kernel

Stack

Shared
Libraries

BSS

(heap)

Data |\

Text
SCod
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Typical Address
Space Layout

Stack region is at top,
and can grow down

Heap has free space to
grow up

Text is typically read-only

Kernel is in a reserved,
protected, shared region
0-th page typically not
used, why?
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Virtual Address /Programmer’s perspective:

logically present
System’s perspective: Not
mapped, data on disk

Space

* A process may
be only partially
resident

— Allows OS to
store individual
pages on disk

— Saves memory
for infrequently
used data & code

* What happens if
we aCCessS Nnon-
resident
memory?
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Page Faults

» Referencing an invalid page triggers a page fault
» An exception handled by the OS

« Broadly, two standard page fault types
— lllegal Address (protection error)
 Signal or Kill the process
— Page not resident
* Get an empty frame
» Load page from disk

» Update page (translation) table (enter frame #, set valid bit, etc.)
» Restart the faulting instruction




Virtual Address

Space

Page table for
resident part of
address space
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Shared Pages

 Private code and data e+ Shared code

— Each process has own — Single copy of code
copy of code and data shared between all

— Code and data can processes executing it
appear anywhere in — Code must not be self
the address space modifying

— Code must appear at
same address in all
processes
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BESE

Proc 1 Address

Space

Two (or more)
processes
running the

same program
and sharing

the text section

Page
tv Table
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Page Table Structure

» Page table is (logically) an array of
frame numbers

— Index by page number

« Each page-table entry (PTE) also has
other bits

Caching
disabled Modified Present/absent

[/ /

% | \ \ | Page frame number

Referenced Protection

Page
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PTE Attributes (bits)

Present/Absent bit

— Also called valid bit, it indicates a valid mapping for the page

Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

Reference bit
— Indicates the page has been accessed

Protection bits

— Read permission, Write permission, Execute permission
— Or combinations of the above

Caching bit

— Use to indicate processor should bypass the cache when
accessing memory

« Example: to access device registers or memory
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Address Translation

» Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

 In paging system, translation involves
replace page number with a frame number
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Virtual Memory Summary

virtual and physical mem chopped up in page%frames
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Page Tables

 Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size

— How many page table entries do we need for one
process?
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Page Tables

 Assume we have
— 64-Dbit virtual address (humungous address space)
— 4 KByte page size

— How many page table entries do we need for one
process?

* Problem:
— Page table is very large

— Access has to be fast, lookup for every memory
reference

— Where do we store the page table?
* Registers?

» Main memory? &——~
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Page Tables

« Page tables are implemented as data structures in main
memory
* Most processes do not use the full 4GB address space
— e.g.,, 0.1 -1 MB text, 0.1 — 10 MB data, 0.1 MB stack
 We need a compact representation that does not waste
space
— But is still very fast to search
* Three basic schemes

— Use data structures that adapt to sparsity M
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

JEL| THE UNIVERSITY OF 5




Two-level Page
Table

« 27 _level
page tables

Top-level

representing
unmapped

Bits 10

pages are not

PT1/| PT2

allocated

—
— Null in the S
top-level
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Two-level Translation

Virtual Address

10 hits | 10 bhits | 12 bits Frame # Offset

Koot page
table pir

Page
Frame

d4-kbvie page
Root page table table (contains
= y e 24 PTEs)
(contains 1024 PTEs) 1024 PTEs)

L TN

Program Paging Mechanism Main Memory




Example Translations
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Alternative: Inverted Page Table

PID VPN  offset

Index | PID VPN ctrl| next

Hash Anchor Table
(HAT)

0
1
(v é =
4
5
_ 6

[T
%

IPT: entry for each physical frame
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Alternative: Inverted Page Table

PID VPN  offset

0 0x5
Index| PID | VPN |ctrl| next
Hash Anchor Table 0
(HAT) 1
@ =1 | Ox1A 0x40C
Y
0x40C| O Ox5 0x0
0x40D
2
\« ppn offset
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Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's

a frame table).

* Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault
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Properties of IPTs

* IPT grows with size of RAM, NOT virtual address space

 Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

* Saves a vast amount of space (especially on 64-bit
systems)

« Used in some IBM and HP workstations
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Given n processes

* how many page tables will the system
have for
— ‘normal’ page tables
— inverted page tables?
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Another look at sharing...
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Proc 1 Address Proc2 Address
)ace

Physical
Address Spage

Two (or more)
processes
running the

same program
and sharing

the text section
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Improving the IPT: Hashed
Page Table

» Retain fast lookup of IPT
— A single memory reference in best case
* Retain page table sized based on physical
memory size (not virtual)
— Enable efficient frame sharing
— Support more than one mapping for same frame
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Hashed Page Table

PID VPN  offset

HPT: Frame number stored in table
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Hashed Page Table

PID VPN  offset

0 0x5
— PID| VPN PFN |[ctrl| next

0 0x5 Ox42 0x0 ~

OO WN -

1 Ox1A | 0x13 0x3

ppn offset

Ox42




Sharing Example

PID VPN  offset

0 0x5

OO WN -
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PID| VPN PEN | ctrl [ next
1 0x5 0x42 0x0

0 Ox5 0x42 0x3
ppn offset
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Sizing the Hashed Page Table

 HPT sized based on physical memory size

* With sharing

— Each frame can have more than one PTE

— More sharing increases number of slots used
* Increases collision likelihood

« However, we can tune HPT size based on:

* Physical memory size
* Expected sharing
» Hash collision avoidance.

— HPT a power of 2 multiple of number of physical
memory frame
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VM Implementation Issue

e Performance?

— Each virtual memory reference can cause two
physical memory accesses
* One to fetch the page table entry
* One to fetch/store the data
= Intolerable performance impact!!

e Solution:

— High-speed cache for page table entries (PTES)
 Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
» Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)
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el TLB operation

devicelll

) Secondary
Main Memory Memory

) " )

Virtual Address

Page # | Offset

Translation
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Data Load
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Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

 |If matching PTE found (7LB hit), the address is
translated

* Otherwise (TLB miss), the page number is used
to index the process’s page table
— |If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception
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TLB properties

« Page table is (logically) an array of frame
numbers

 TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V [ W
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TLB properties

« TLB may or may not be under direct OS control
— Hardware-loaded TLB

e On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS, Itanium (optionally)
» TLB size: typically 64-128 entries

« Can have separate TLBs for instruction fetch
and data access

 TLBs can also be used with inverted page tables
(and others)
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TLB and context switching

 TLB is a shared piece of hardware
* Normal page tables are per-process (address space)

 TLB entries are process-specific

— On context switch need to flush the TLB (invalidate all
entries)
* high context-switching overhead (Intel x86)

— or tag entries with address-space ID (ASID)
« called a tagged TLB
 used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits
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TLB effect

« Without TLB

— Average number of physical memory
references per virtual reference

=2
» With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99"1+0.017*2
=1.01
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Recap - Simplified Components of
Virtual Address Spaces VM SyStemageTablesfors

(3 processes) / processes Frame Table

ey

l= :
i

Frame Pool

CPU

TLB

Physical Memory
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Recap - Simplified Components of
VM System

Virtual Address Spaces
(3 processes)
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CPU

TLB

Inverted Page

Q‘ \%((\

N E

/ Table

<
Aw/v
Qe

Frame Pool

Physical Memory
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Recap - Simplified Components of
VM System

Virtual Address Spaces Hashed Page

(3 processes) Table Frame Table
|
N j o
Vet
’\@6\&\\6
CPU / |
TLB
2
Frame Pool

Physical Memory
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MIPS R3000 TLB

31 G : I
VPN ASID (

EntryHi Register (TLE key fields)

31 12 11 10 G 8 ] I
PFN [\ [ \ (5 (0

EntrylLo Register (TLE data fields)

* N = Not cacheable
* D = Dirty = Write protect

* G = Global (ignore ASID
in lookup)

 V =valid bit
e 64 TLB entries

* Accessed via software through
Cooprocessor 0 registers

— EntryHi and EntryLo
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R3000 Address
Space Layout

* ksegO:
— 512 megabytes

— Fixed translation window to
physical memory

« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical

« TLB not used
— Cacheable
— Only kernel-mode accessible
— Usually where the kernel code is

placed
B THE UNIVERSITY OF Physical Memory
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Oxffffffff

0xC0000000

0xA0000000

0x00000000

kKuseg




R3000 Address
Space Layout

0xC0000000
* Kkusegq:
~ 2 gigabytes 0xA0000000
— TLB translated (mapped) PR
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode OXSOOOOOQO
accessible /]
— Page size is 4K
= THE UNIVERSITY OF \V
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OXFFFFFFFF

0x00000000
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OxFFFFFFFF

R3000 Address
Space Layout 000000

— Switching processes
switches the translation 0xA0000000
(page table) for kuseg

0x80000000

Proc 1 Proc 2 Proc 3
kuseg kuseg kuseg

0x00000000




R3000 Address

Space

» kseg1:
— 512 megabytes
— Fixed translatio

Layout

n window to

physical memory

« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
— NOT cacheable

— Only kernel-mode accessible

— Where devices
boot ROM)

B
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JZPhysical Memory

Oxffffffff

0xC0000000

0xA00000

0x800Q0000

0x00000000
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