System Calls

Interface and Implementation

1 [UNSW

Learning Outcomes

* A high-level understanding of System Call interface

* Mostly from the user’s perspective
* From textbook (section 1.6)

* Understanding of how the application-kernel boundary is

crossed with system calls in general

* Including an appreciation of the relationship between a case study
(0S/161 system call handling) and the general case.

* Exposure architectural details of the MIPS R3000

* Detailed understanding of the of exception handling mechanism
* From “Hardware Guide” on class web site

System Calls

Interface

3 B UNSW

The Structure of a Computer System

System Libraries

Kernel Mode

User Mode 'T‘

Interaction via

System Calls

Memory

4 B UNSW

System Calls

* Can be viewed as special function calls
* Provides for a controlled entry into the kernel
* While in kernel, they perform a privileged operation
* Returns to original caller with the result

* The system call interface represents the abstract machine provided by
the operating system.

The System Call Interface:
A Brief Overview

* From the user’s perspective
* Process Management
* File /O
 Directories management
* Some other selected Calls
e There are many more
* On Linux, seeman syscalls foralist

Some System Calls For Process Management

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Walit for a child to terminate

S = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

Some System Calls For File Management

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Some System Calls For Directory Management

Directory and file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name?2)

Create a new entry, name2, pointing to name1

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Some System Calls For Miscellaneous Tasks

Miscellaneous

Call Description
s = chdir(dirname) Change the working directory
s = chmod(name, mode) Change a file’s protection bits
s = kill(pid, signal) Send a signal to a process
seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

10 5 UNSW

System Calls

* A stripped down shell:

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt */
read_command (command, parameters) /* input from terminal */
if (fork() '=0) { [* fork off child process */
/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */
1 else {
/* Child code */
execve (command, parameters, 0); /* execute command */
}
)

11 58 UNSW

Syste

Calls

P

Win32 7/

UNIX Description

fork CreateProcess Create a new process

waitpid | WaitForSingleObject || Can wait for a process to exit

execve | (none) || CreateProcess = fork + execve

exit ExitProcess Terminate execution

open CreateFile Vﬂ Create a file or open an existing file

close CloseHandle Close afile

read ReadFile Read data from afile

write WriteFile Write data to a file

Iseek SetFilePointer Move the file pointer

stat GetFileAttributesEx Get various file attributes

mkdir CreateDirectory qr Create a new directory

rmdir RemoveDirectory / Remove an empty directory

link (none) ~ Y| Win32 does not support links
Lunlink DeleteFile Destroy an existing file

mount (none) Win32 does not support mount

umount | (none) Win32 does not support mount

chdir SetCurrentDirectory | Change the current working directory

chmod | (none) Win32 does not support security (although NT does)

kill (none) Win32 does not support signals

time GetlLocalTime Get the current time

Some Win32 API calls

12

System Call Implementation

Crossing user-kernel boundary

13 5 UNSW

A Simple Model of CPU Computation

* The fetch-execute cycle

* Load memory contents from address in CPU Registers
program counter (PC)

* The instruction
e Execute the instruction _
* Increment PC
* Repeat

Execute Cycle

14 [UNSW

A Simple Model of CPU Computation

* Stack Pointer (SP)

* Status Register

* Condition codes
* Positive result
e Zero result
* Negative result

* General Purpose Registers

* Holds operands of most instructions

* Enables programmers (compiler) to
minimise memory references.

CPU Registers

SP: Oxcbf3 i

I R1
)
Rn

Privileged-mode Operation

_ _ CPU Registers
* To protect operating system execution,

two or more CPU modes of operation Interrupt Mask
exist i
N Exception Type
* Privileged mode (system-, kernel-mode) MMU
* All instructions and registers are available [0
« User-mode N

* Uses ‘safe’ subset of the instruction set

* Only affects the state of the application itself

* They cannot be used to uncontrollably interfere with
0S

* Only ‘safe’ registers are accessible

SP: Oxcbf

YYYYYY

Example Unsafe Instruction

e “cli” instruction on x86 architecture
 Disables interrupts

* Example exploit

cIT /* disable interrupts */
while (true)
/* loop forever */;

Privileged-mode Operation

* The accessibility of addresses
within an address space changes
depending on operating mode

 To protect kernel code and data

* Note: The exact memory ranges
are usually configurable, and vary
between CPU architectures
and/or operating systems.

Memory Address Space
OXFFFFFFFF

0x80000000

0x00000000

4

Accessible only
to
Kernel-mode

Accessible to
User- and
Kernel-mode

\

System Call 7

Aoplicati
User Mode % pplication

R

N
® R
lg/ %’o

Kernel Mode

System call mechanism
securely transfers from user System Call
execution to kernel execution Handler
. B UNSW
and back 19

YYYYYY

Questions we’ll answer

*There is only one register set
* How is register use managed?

* What does an application expect a system call to look
like?

* How is the transition to kernel mode triggered?
* Where is the OS entry point (system call handler)?
* How does the OS know what to do?

20 G UNSW

System Call Mechanism Overview

 System call transitions triggered by special
processor instructions

e User to Kernel
* System call instruction

* Kernel to User
e Return from privileged mode instruction

21 5 UNSW

System Call Mechanism Overview

* Processor mode

e Switched from user-mode to kernel-mode
* Switched back when returning to user mode

e Stack Pointer (SP)

* User-level SP is saved and a kernel SP is initialised
* User-level SP restored when returning to user-mode

* Program Counter (PC)
e User-level PCis saved and PC set to kernel entry point
* User-level PC restored when returning to user-level

* Kernel entry via the designated entry point must be
strictly enforced

System Call Mechanism Overview

* Registers

* Set at user-level to indicate system call type and its
arguments
* A convention between applications and the kernel
* Some registers are preserved at user-level or kernel-level
in order to restart user-level execution
* Depends on language calling convention etc.
* Result of system call placed in registers when returning to
user-level
* Another convention

23 [UNSW

Why do we need system calls?

* Why not simply jump into the kernel via a function call????

* Function calls do not
* Change from user to kernel mode
* and eventually back again
» Restrict possible entry points to secure locations
* To prevent entering after any security checks

24 UNSW

SSSSSS

Steps in Making a System Call

Address
OxFFFFFFFF _
Return to caller Librar
Trap to the kernel procegure
5| Put code for read in register read
A 10
u
Ser space < Increment SP 11 "
~ Call read
3| Pushfd User program
2| Push &buffer calling read
1| Push nbytes
6 9
L -
{5 * 7
Kernel space . 7 8 | Sys call
(Operating system) < B el a “| handler
-

0

There are 11 steps in making the system call

read (fd, buffer, nbytes) .

YYYYYY

The MIPS R2000/R3000

* Before looking at system call mechanics in some detail, we
need a basic understanding of the MIPS R3000

Coprocessor 0

* The processor control registers are
located in CPO

* Exception/Interrupt management
registers

* Translation management registers

* CPO is manipulated using mtcO
(move to) and mfcO (move from)
instructions

* mtcO/mfcO are only accessible in kernel
mode.

.1 (floating point)

PC: 0x0300

HI/LO
R1
!
Rn

CPO Registers

* Exception Management

* cO_cause

* Cause of the recent exception
* cO_status

e Current status of the CPU
* cO_epc

* Address of the instruction
that caused the exception

e cO_badvaddr

* Address accessed that caused
the exception

 Miscellaneous
e cO_prid
* Processor Identifier

* Memory Management

e cO_index

c0_random
cO_entryhi
cO_entrylo
c0_context

* More about these later in

course

cO status

31 30 20 28 27 26 25 24 23 22 21 20 15 18 17 | G
CU3 | CuU2 | CUl | CUD () RE] BEV I's PE CM PZ | SwC | IsC
15 b T G 3] 3 2 | ()

1M) KUo | 1Eo | KUp | [Ep | KUc | IEc

Figure 3.2. Fields in status register (SR)

* For practical purposes, you can ignore most bits
* Green background is the focus

cO_status

31 A0 29 28 27 20 25 24 23 Le 21 20 19 18 17 | &
CU3 | cUZ | CcU1 | CUD 0 RE 0 BEV| TS | PE | CM | PZ | SwC| IsC
15 8 7
IM | 0 | }au.:.‘ 1[.m[[]ﬂ;\n.
l"i__El.l["E' A.2. Fields in status lE'gISt'E'l (SK)
* |M

* Individual interrupt mask bits

* 6 external
e 2 software

* 1 = user mode

* IE

* 0 = all interrupts masked

* 1 =interrupts enable

* Mask determined via IM bits

*C, P, O = current, previous, old

30 &

. KEJO = kernéj f C

UNSW

SYDNEY

cO_cause

BD |0 CE () P H{ ExcCode

Figure 3.3. Fields in the Cause regist

° |P e BD
* Interrupts pending

* 8 bits indicating current state of - If set, the instruction

interrupt lines that caused the
e CE exception was in a
« Coprocessor error branch delay slot
* Attempt to access disabled
Copro. * ExcCode

* The code number of the
exception taken

31 B UNSW

Exception Codes

ExcCode | Mnemonic Description
alue

0 [t [nterrupt

1 /m “TLE modification”

2 / TLEL “TLE load/TLE store”

3 [TLBS

1 \ AdEL

AdES

N

Address error (on load/1-Tetch or store respectively).
Fither an attempt to access outside kuseg when in user
mocle, or an attempt to read a word or hall-word at a

misaligned address.

Table 3.2. ExcCode values: different Kinds of exceptions

Exception Codes

ExcCode | Mnemonic Description
Value
B IBE Bus error (instruction fetch or data load, respectively).
— External hardware has signalled an error of some Kind;

/ DBE proper exception handling is system-dependent. The
R30xx [amily CPUs can’t take a bus error on a store;
the write buflfer would make such an exception
imprecise”.

o

B Syscall Generated unconditionally by a syscall instruction.

9 Bp Breakpoint - a break instruction.

10 k1 ‘reserved instruction”

11 CpU “Co-Processor unusable”

12 Ov “arithmetic overflow”. Note that "unsigned” versions ol
instructions (e.g. addu) never cause this exception.

13-31 - reserved. Some are already defined [or MIPS CPUs such
as the RGO00 and R4xxx

Table 3.2. ExcCode values: different kinds of exceptions

33 UNSW

cO_epc

nop
* The Exception Program

Counter

* Points to address of where to
restart execution after
handling the exception or

\sw r3 (r4

interrupt
« Example (floating point)
* Assume sw r3, (r4) causes PC: 0x0300
a restartable fault exception HI/LO
Aside: We are ignore BD-bit in R1
cO_cause which is also used in reality
on rare occasions. !
Rn

Exception Vectors

Physical
Address

Description

Program “segment”’
address
ksegl
ksegl
Oxbfecd 0100 Kksegl

_Mxbfc0 0180 ksegl

Oxbfec0 0000 | ksegl

0x0000 0000

0x0000 0080

Ox1fcO 0100

Ox1fcO0 0180

Ox1fcO 0000

TLE miss on kuseg reference only.
All other exceptions.

Uncached alternative kuseg TLD
miss entry point (used if SK bit
BEV set).

Uncached alternative for all other
exceptions, used if SR bit BEV set).

The "reset exception’.

Table 4.1. Reset and exception entry points (vectors) for R30xx family

Simple Exception Walk-through

Applicati
User Mode / Pplcation

/—\

Kernel Mode

Interrupt
Handler

YYYYYY

Hardware exception handling

PC Z/ EPC
oml
__/

e Let’s now walk through an Cause
exception
* Assume an interrupt occurred

as the previous instruction Status p KUg IE
completed —

* Note: We are in user mode with 1P| ? ’% 11/ 1
interrupts enabled

Hardware exception handling

PC

0x12345678

EPC

\ﬁ

Status KUo IEo KUp IEp KUc IEc

 Instruction address at which
to restart after the interrupt
is transferred to EPC

-?

?

?

?

1

1

YYYYYY

PC

Hardware exception handling

0x12345678

alon

Interrupts
disabled
and previous
state shifted

Kernel Mode is Status

set, and
previous mode
shifted along

KUo IEo KUp IEp K

-?

?

3 [Flol¥

YYYYYY

Hardware exception handling

PC EPC
0x12345678
Cause
o ||
__Status KU TES KUp [Ep KUG IEc
21?711 1
Code for the e
exception placed in
Cause. Note
Interrupt code =0

40 5 UNSW

Hardware exception handling

(0x80000080)

Cause

—

(/B

Statiic Uo IEo KUp IEp KUc
(2][+]1fo]0)

Address of general
exception vector
placed in PC

Hardware exception handling

PC EPC
0x80000080
* CPU is now running in kernel Cause
mode at 0x80000080, with
interrupts disabled 0 .
* All information required to Status KUo IEo KUp IEp KUc IEc
* Find out what caused the

exception
» Restart after exception handling

?2171111{01]0

IS In coprocessor registers

Returning from an exception

* For now, lets ignore
* how the exception is actually handled
* how user-level registers are preserved

* Let’s simply look at how we return from the exception

43 55 UNSW

Returning from an exception

PC EPC
0x80001234
* This code to return is Cause
BN - B
1w @ saved ep
nop Status KUo IEo KUp IEp KUc IEc
jr 27 Load the contents of |0

rfe EPC which is usually
moved earlier to

somewhere in memory

by the exception handler

Returning from an exception

PC EPC

oM

* This code to nis Cause
KN

1w @ saved epc
nop J Statiig Klla lEa KU [Ep KUc IEc
jr r27 __ 1 [1]0]0
rfe Store the EPC back in

the PC

YYYYYY

Returning from

an exception

PC

0x12345678

* This code to returnis

execute a restore from
exception instruction

lw r27, saved ep
nop

jr r27
rfe

tatus KUo IEo KUp IEp KUc IEc
7
/

g

\ O A O 4

—

e S

Returning from an exception

PC ——=u EPC

(0x1 234567%

* We are-now haekin the same Cause

state we were in when the
exception happened

Status KUo IEo KUp IEp

?6?611

MIPS System Calls

 System calls are invoked via a syscall instruction.

* The syscall instruction causes an exception and transfers
control to the general exception handler

* A convention (an agreement between the kernel and
applications) is required as to how user-level software
indicates

* Which system call is required
* Where its arguments are
* Where the result should go

0S/161 Systems Calls

* 0S/161 uses the following conventions

* Arguments are passed and returned via the normal C function calling
convention

* Additionally
* Reg vO tontainsthe system call number
ontains
Y

* Onreturn, re
* 0)if success
°n

D coantains successful result

@if failure, vO has the errno.
* v0 stored
* -1 returned ImvO

49 UNSW

YYYYYY

ysCall No.

Preserved

—

Preserved for
C calling
convention

Preserved

Result

—

ra

fp

A nvention

SP

far kernel

gp

exit

k1

KO

s/

sO

t9

tO

a3

a2

al

a0

v1

v0

vd

AT

Zero

50 B8 UNSW

* Seriously low-level code
follows

* This code is not for the faint
hearted

51 [UNSW

YYYYYY

User-Level System Call Walk Through — Calling

read()

int read(int filehandle, void *buffer, size t size)

* Three arguments. one return value

* Code fragment calling the read function

400124
400128:
40012c:
400130:
400134:

400138:
<docat+0x94>

02602021
27a50010
0cl1001a3
24060400
00408021
1a000016

move ald,s3

addiu al,sp,16 42>/~
jal 40068c <vead>

1li a2,1024

move s0,vO0

blez s0,400194

* Args are loaded, return value is tested

Inside the read() syscall function
part 1
0040068c <read>:

40068c: 08100190 J 400640
< _syscall>

400690: 24020005 1i vO0,5

* Appropriate registers are preserved
* Arguments (a0-a3), return address (ra), etc.

* The syscall number (5) is loaded into vO
e Jump (not jump and link) to the common syscall routine

53 5B UNSW

The read() syscall function

2 N
part 2 Generate a syscall
exception

00400640 < syscall>: V J

400640: 0000000c syscall

400644: 10e00005 beqz a3,40065¢c < syscall+0xlc>

400648: 00000000 nop

40064c: 3c011000 lui at,0x1000

400650: ac220000 sw vO0,0(at)

400654 : 2403ffff 1i +v1,-1

400658: 2402ffff 1i vO0,-1

40065c: 03e00008 jr ra

400660 00000000 nop

54 5 UNSW

The read() syscall function

part 2

00400640 < syscall>:

400640:
400644
400648:
40064c:
400650:
400654
400658:
40065c:
400660:

0000000c
10e00005
00000000
3c011000
ac220000
2403ffff
2402ffff
03e00008
00000000

syscall

beqz a3, 40065i\/_syscall+0x1c>

nop
lui
sSwW
1i
1i
jr
nop

a : D
Test success, if yes,
branch to return

from function y

at,0x1000
v0,0 (at)

vl, -1
v0,-1

ra

The read() syscall function

part 2

00400640 < syscall>:

400640:
400644
400648:
40064c:
400650:
400654
400658:
40065c:
400660:

0000000c
10e00005
00000000
3c011000
ac220000
2403ffff
2402ffff
03e00008
00000000

syscall

s

begz a3,40065
nop

lui at,0x10
sw +v0,0(at)

li v1,-1
li vO0,-1
jr ra
nop

\
If failure, store code
In errno

/

The read() syscall function

part 2

00400640 < syscall>:

400640:
400644
400648:
40064c:
400650:
400654
400658:
40065c:
400660:

0000000c
10e00005
00000000
3c011000
ac220000
2403ffff
2402ffff
03e00008
00000000

syscall

s

begz a3,40065
nop
lui at,0x10

sw vO0,0(

li 1,
li vO0,-1
jr ra
nop

Set read() result to
-1

™

/

The read() syscall function

part 2

00400640 < syscall>:

400640:
400644
400648:
40064c:
400650:
400654
400658:
40065c:
400660:

0000000c
10e00005
00000000
3c011000
ac220000
2403ffff
2402ffff
03e00008
00000000

f Return to location h
after where read()

nop

was called y

58 & UNSW

Summary

* From the caller’s perspective, the read() system call
behaves like a normal function call
* It preserves the calling convention of the language

* However, the actual function implements its own
convention by agreement with the kernel
* Our 0S/161 example assumes the kernel preserves
appropriate registers(s0-s8, sp, gp, ra).
* Most languages have similar libraries that interface
with the operating system.

System Calls - Kernel Side

*Things left to do

* Change to kernel stack

* Preserve registers by saving to memory (on the kernel
stack)

* Leave saved registers somewhere accessible to
e Read arguments
e Store return values

* Do the “read()”

* Restore registers
 Switch back to user stack
* Return to application

YYYYYY

0S/161 Exception Handling

* Note: The following code is from the uniprocessor variant of 0S161 (v1.x).
* Simpler, but broadly similar to current version.

61 [UNSW

exception:
move kl, sp
mfcO0 kO, cO_st
andi kO, kO, CST .

/* Get status register */

/* Save previous stack pointer in k1l */

/* Check the we-were-in-user-mode bit */

beq kO, $0, 1f clear, from kernel, already have stack */
nop lay slot */
/* Coming from user mod to sp */

la kO, curkstack
lw sp, 0(kO)

nop

mfcO0 kO, cO0 cause /* N ause. */
j common_exception

nop

exception:

move kl, sp /* Save previous stack pointer in k1l */
mfcO0 kO, cO_status /* Get status register */

andi kO, kO, CST Kup /* Check the we-were-in-user-mode bit */

beq kO, $0, 1f /* If clear, from kernel, already have stack */
nop /* delay slot */

/* Coming from user mode - load kernel stack into sp */

la k0, curkstack /* get address of "curkstack" */
lw sp, 0(kO) /* get its value */
nop /* delay slot for the load */
1:
mfcO0 kO, cO cause /* Now, load the exception cause. */
j common_ exception /* Skip to common code */
nop /* delay slot */

common exception:

/*

* At this point:

*/

/*

Interrupts are off. (The processor did this for us.)
kO contains the exception cause value.

k1l contains the old stack pointer.

sp points into the kernel stack.

All other registers are untouched.

* Allocate stack space for 37 words to hold the trap frame,

* plus
*/
addi sp,

four more words for a minimal argument block.

sp, -164

/* The order here must match mips/include/trapframe.h. */

sw ra, 160 (sp)

/* dummy for gdb */

sw s8, 156 (sp) /*
sw sp, 152 (sp) /*
sw gp, 148(sp) /*
sw k1, 144 (sp) /*
sw k0, 140 (sp) /*
sw k1, 152 (sp) /*
nop /*
mfcO0 k1, cO _epc /*
sw k1, 160 (sp) /*

save s8 */
dummy for gdb */

save gp */

dummy for gdb */
dummy for gdb */

real saved sp */

delay slot for store */

Copr.0 reg 13 == PC for

real saved PC */

/* The order here must match mips/include/trapframe.h. */

sw ra, 160 (sp)

/* dummy for gdb */

sw s8, 156 (sp) /*
sw sp, 152 (sp) /*
sw gp, 148(sp) /*
sw k1, 144 (sp) /*
sw kO, 140 (sp) /*
sw k1, 152 (sp) /*
nop /*
mfcO0 k1, cO0 _epc /*
sw k1, 160 (sp) /*

save s8 */
dummy for gdb
save gp */
dummy for gdb
dummy for gdb

real saved sp

s N
The real work starts

here
*/

*/
*/

*/

delay slot for store */

Copr.0 reg 13

real saved PC

== PC for exception */

*/

SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW

t9,
t8,
s7,
s6,
s5,
s4,
s3,
s2,
sl,
s0,
t7,
t6,
t5,
t4,
t3,
t2,
t1,
to,
a3,
az,
al,
a0,
vl,
vO,
AT,
ra,

136 (sp)
132 (sp)
128 (sp)
124 (sp)
120 (sp)
116 (sp)
112 (sp)
108 (sp)
104 (sp)
100 (sp)
96 (sp)
92 (sp)
88 (sp)
84 (sp)
80 (sp)
76 (sp)
72 (sp)
68 (sp)
64 (sp)
60 (sp)
56 (sp)
52 (sp)
48 (sp)
44 (sp)
40 (sp)
36 (sp)

/*
* Save special registers.
*/

mfhi t0

mflo tl1

sw t0, 32(sp)

sw tl, 28 (sp)

/*
* Save remaining exception context information.
*/
sw k0, 24 (sp) /* kO was loaded with cause earlier */
mfcO tl, cO_status /* Copr.0 reg 11 == status */
SwW tl, 20 (sp)
mfcO0 t2, cO0 vaddr /* Copr.0 reg 8 == faulting vaddr */

sSwW t2, 16 (sp)

/*
* Pretend to save $0 for gdb's benefit.
*/

sw $0, 12(sp)

/*
* Prepare to call

*/

addiu a0, sp, 16
jal mips_trap

nop

mips trap(struct trapframe ¥)

/* set argument */
call it */
* delay slot */

struct trapframe ({

};

u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t
u int32 t

u int32 t
u_int32 t

u_int32 t
u_int32 t
u_int32 t
u_int32 t
*/

u int32 t
u int32 t
u int32 t
u int32 t
u int32 t

tf vaddr;
tf status;
tf cause;
tf lo;
tf hi;
tf ra;
tf at;
tf vO;
tf vl;
tf al;
tf al;
tf a2;
tf a3;
tf tO0;

tf t7;
tf s0;

tf s7;
tf t8;
tf t9;
tf kO;

tf k1;
tf ;
tf sp;
tf s8;
tf epc;

/* vaddr register */
/* status register */
/* cause register */

/* Saved register 31 */

/* Saved register 1 (AT) */
/* Saved register 2 (v0) */
/* etc. */

/ By creating a pointer to\
here of type struct
trapframe *, we can
access the user’s saved
registers as normal

epc

s8

SP

gp

K1

KO

t9

t8

\ variables within ‘C’

/* coprocessor 0 epc regi

at

ra

hi

lo

cause

status

vaddr

Kernel Stack

70 & UNSW

e

Now we arrive in the ‘C’ kernel
/*

* General trap (exception) handling function for mips.
* This is called by the assembly-language exception handler once
* the trapframe has been set up.
*/
void
mips trap(struct trapframe *tf)
{
u_int32 t code, isutlb, iskern;
int savespl;

/* The trap frame is supposed to be 37 registers long. */
assert(sizeof (struct trapframe)==(37*4));

/* Save the value of curspl, which belongs to the old context. */
savespl = curspl;

/* Right now, interrupts should be off. */
curspl = SPL HIGH;

What happens next?

* The kernel deals with whatever caused the exception
* Syscall
* Interrupt
* Page fault

* It potentially modifies the trapframe, etc
e E.g., Store return code in v0O, zero in a3

* ‘mips_trap’ eventually returns

exception return:

/*

16 (sp)

1w t0, 20 (sp)
nop

mtcO0 t0, cO_status

/*

24 (sp)

/*
/*

no need to restore tf vaddr */
load status register value into t0 */
load delay slot */

/* store it back to coprocessor 0 */
no need to restore tf cause */

/* restore special registers */
1w t1, 28(sp)
1w t0, 32(sp)

mtlo tl
mthi tO0

/*
1w

1w
1w
1w
1w
1w
1w
1w

load the general registers */

ra,

AT,
vO,
vl,
ao,
al,
az,
a3,

36 (sp)

40 (sp)
44 (sp)
48 (sp)
52 (sp)
56 (sp)
60 (sp)
64 (sp)

lw tO,

lw
lw
lw
lw
lw
lw
lw
lw
lw
lw
lw
lw
lw
lw
lw
lw
lw

/*
/*

tl,
t2,
t3,
t4,
t5,
t6,
t7,
s0,
sl,
s2,
s3,
s4,
s5,
s6,
s7,
t8,
t9,

68 (sp)

72 (sp)
76 (sp)
80 (sp)
84 (sp)
88 (sp)
92 (sp)
96 (sp)
100 (sp)
104 (sp)
108 (sp)
112 (sp)
116 (sp)
120 (sp)
124 (sp)
128 (sp)
132 (sp)
136 (sp)

140 (sp)
144 (sp)

"saved" k0 was dummy garbage anyway */
"saved" k1l was dummy garbage anyway */

lw gp, 148 (sp) /* restore gp */

/*
1w
1w

1w

/*
jr

rfe

.end common exceptio

152 (sp) stack pointer - below */
s8, 156 (sp) /* restore s8 */
k0O, 160 (sp) /* fetch exception return PC into kO */
sp, 152 (sp) /* fetch saved sp (must be last) */
done */
kO /* jump back */
/* in delay slot */

