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Welcome to OS @ UNSW
COMP3231/9201/3891/9283
(Extended) Operating Systems

Dr. Kevin Elphinstone

What is an Operating System?
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Block Diagram of Haswell Platform Architecture http://www.pcquest.com
3

Role 1: The Operating System is an Abstract 
Machine
• Extends the basic hardware with added functionality
• Provides high-level abstractions

• More programmer friendly
• Common core for all applications

• E.g. Filesystem instead of just registers on a disk controller

• It hides the details of the hardware
• Makes application code portable
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Role 2: The Operating System is a Resource 
Manager
• Responsible for allocating resources to users and processes
• Must ensure

• No Starvation
• Progress
• Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share; limits (quotas), 
etc…

• Overall, that the system is efficiently used
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Structural (Implementation) View: the Operating 
System is the software Privileged mode.  
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Course Aim

• A deep understanding of the key concepts and mechanisms 
of modern operating systems:
• processes and process management, including threads and 

concurrency management,
• physical and virtual memory management,
• on-line storage methods (file systems)
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Course Approach

• Operating system background and theory in the lectures
• Practical application of theory through challenging 

assignments
• Implementing functionality in a rudimentary OS (OS/161)
• Challenging as OSes are large and complex

• Tutorials to re-enforce concepts being taught and provide 
support for assignments

• Learn collaboratively through group assignments (the last 2 
assignments)

Assumed Knowledge

• Computing Theory and Background
• Basic computer architecture

• CPUs, memory, buses, registers, machine instructions, 
interrupts/exceptions.

• Common CS algorithms and data structures
• Links lists, arrays, hashing, trees, sorting, searching…

• Ability to read assembly language
• Exposure to programming using low-level systems calls (e.g. reading 

and writing files)
• Practical computing experience

• Capable UNIX command line users
• Familiar with the git revision control system
• Competent C programmers

• Understand pointers, function pointers, memory allocation (malloc())
• Comfortable navigating around an existing code base.
• Able to debug an implementation.
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Why does this fail?
void set(int *x)
{

*x = 1;
}
void main()
{ 

int *a;
set(a);
printf(“%d\n”,*a);

} 
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Operating System Coding
Why does this fail?
void set(int *x)
{

*x = 1;
}
void main()
{ 

int a;
set(&a);
printf(“%d\n”,a);

} 
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Assignments

•We will be using OS/161,
• an educational operating system
• developed by the Systems Group At Harvard
• It contains roughly 20,000 lines of code and comments

• To encourage you to start early, 
• Bonus 10% of awarded mark for the assignment for finishing a week 

early
• See course outline for exact details

• Read the fine print!!!!

• If you start a couple days before they are due, you are likely 
to be late.
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16% late

Assignments

• Late penalty
• 4% of total assignment value per day

• Assignment is worth 20%
• You get 18, and are 2 days late
• Final mark = 18 – (20*0.04*2) = 16 (16.4)

• Assignments are only accepted up to four days late. 
• Greater than 4 days = 0
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Assignments
• Warmup assignment (ASST0) 

• Done individually
• Available NOW!!!!

• Approximate due dates below
• ASST2 and ASST3 are in pairs 

• Info on how to pair up available soon
• Additional, advanced versions of the assignment 2 & 3

• Available bonus marks are small compared to amount of effort required.
• Student should do it for the challenge, not the marks.
• Attempting the advanced component is not a valid excuse for failure to 

complete the normal component of the assignment 
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Assignment Due

ASST0 Week 2

ASST1 Week 4

ASST2 Week 7

ASST3 Week 10

Assignments

Submission test failed. Continue with submission 
(y/n)? y

• Lazy/careless submitter penalty: 15%

• Submitted the wrong assignment version penalty: 15%
• Assuming we can validly date the intended version 
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Plagiarism

•We take cheating seriously!!!
•We systematically check for plagiarised code

• Penalties are generally sufficient to make it difficult to 
pass

•We can google as easy as you can
• Some solutions are wrong
• Some are greater scope than required at UNSW

• You do more than required
• Makes your assignment stick out as a potential plagiarism case

•Avoid developing your code in public bitbucket and 
github repositories!!
• Obtain a free academic account.
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Exams

• There is NO mid-session
• The final written exam is 2 hours
• Supplementary exam are available according to UNSW & 

school policy, not as a second chance.
• Medical or other special consideration only
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Piazza Forums

• Forum for Q/A about assignments and course
• Ask questions there for the benefit of everybody
• Share your knowledge for the benefit of your peers
• Look there before asking
• Apps for phone

• https://piazza.com/
• Longer link on class web page

• You will have received an invite from them to your UNSW email address.
• Please join and contribute.
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Consultations/Questions

• Questions should be directed to the forum.
• Admin and Personal queries can be directed to the class 

account cs3231@cse.unsw.edu.au
• We reserve the right to ignore email sent directly to us 

(including tutors) if it should have been directed to the 
forum.

• Consultation Times
• See course web site.
• Must email (cs3231@cse) at least an hour in advance and show up on 

time.
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Back to Operating Systems
Chapter 1 – 1.3

Chapter 1.5 – 1.9

Learning Outcomes

•High-level understand what is an operating system 
and the role it plays
•A high-level understanding of the structure of 

operating systems, applications, and the 
relationship between them.
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Operating System Kernel
• Portion of the operating system that is running in privileged 

mode
• Usually resident (stays) in main memory
• Contains fundamental functionality

• Whatever is required to implement other services
• Whatever is required to provide security

• Contains most-frequently used functions
• Also called the nucleus or supervisor
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The Operating System is Privileged

• Applications should not be able to interfere or bypass the 
operating system
• OS can enforce the “extended machine”
• OS can enforce its resource allocation policies
• Prevent applications from interfering with each other
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Delving Deeper: 
The Structure of a Computer System
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The Structure of a Computer System
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The Structure of a Computer System
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Interaction via

System Calls

Privilege-less OS

• Some Embedded OSs have no 
privileged component
• e.g. PalmOS, Mac OS 9, RTEMS
• Can implement OS functionality, but 

cannot enforce it.
• All software runs together
• No isolation
• One fault potentially brings down entire 

system
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A Note on System Libraries

System libraries are just that, libraries of support functions 
(procedures, subroutines)
• Only a subset of library functions are actually systems calls

• strcmp(), memcpy(), are pure library functions
• manipulate memory within the application, or perform computation

• open(), close(), read(), write() are system calls
• they cross the user-kernel boundary, e.g. to read from disk device
• Implementation mainly focused on passing request to OS and returning result to 

application

• System call functions are in the library for convenience
• try man syscalls on Linux
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Operating System Software

• Fundamentally, OS functions the same 
way as ordinary computer software
• It is a program that is executed (just like 

applications)
• It has more privileges

• Operating system relinquishes control 
of the processor to execute other 
programs
• Reestablishes control after

• System calls
• Interrupts (especially timer interrupts)
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Operating System Internal Structure?

33

Classic Operating System Structure

• The layered approach
a) Processor allocation and 

multiprogramming
b) Memory Management
c) Devices
d) File system
e) Users

– Each layer depends on 
the inner layers
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Operating System Structure

•In practice, layering is only a guide
•Operating Systems have many interdependencies

• Scheduling on virtual memory
• Virtual memory (VM) on I/O to disk
• VM on files (page to file)
• Files on VM (memory mapped files)
• And many more…
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The Monolithic Operating System Structure

• Also called the “spaghetti 
nest” approach
• Everything is tangled up with 

everything else. 

• Linux, Windows, ….
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The Monolithic Operating System Structure

• However, some 
reasonable structure 
usually prevails
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The end
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