
1

Welcome to OS @ UNSW
COMP3231/9201/3891/9283
(Extended) Operating Systems

Dr. Kevin Elphinstone

What is an Operating System?

2

Block Diagram of Haswell Platform Architecture http://www.pcquest.com
3

Role 1: The Operating System is an Abstract
Machine
• Extends the basic hardware with added functionality
• Provides high-level abstractions

• More programmer friendly
• Common core for all applications

• E.g. Filesystem instead of just registers on a disk controller

• It hides the details of the hardware
• Makes application code portable

4

5

UsersDisk

Memory

CPU

Network

Bandwidth

Role 2: The Operating System is a Resource
Manager
• Responsible for allocating resources to users and processes
• Must ensure

• No Starvation
• Progress
• Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share; limits (quotas),
etc…

• Overall, that the system is efficiently used

6

2

Structural (Implementation) View: the Operating
System is the software Privileged mode.

7

Requests (System Calls)

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Course Aim

• A deep understanding of the key concepts and mechanisms
of modern operating systems:
• processes and process management, including threads and

concurrency management,
• physical and virtual memory management,
• on-line storage methods (file systems)

8

Requests (System Calls)

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Course Approach

• Operating system background and theory in the lectures
• Practical application of theory through challenging

assignments
• Implementing functionality in a rudimentary OS (OS/161)
• Challenging as OSes are large and complex

• Tutorials to re-enforce concepts being taught and provide
support for assignments

• Learn collaboratively through group assignments (the last 2
assignments)

Assumed Knowledge

• Computing Theory and Background
• Basic computer architecture

• CPUs, memory, buses, registers, machine instructions,
interrupts/exceptions.

• Common CS algorithms and data structures
• Links lists, arrays, hashing, trees, sorting, searching…

• Ability to read assembly language
• Exposure to programming using low-level systems calls (e.g. reading

and writing files)
• Practical computing experience

• Capable UNIX command line users
• Familiar with the git revision control system
• Competent C programmers

• Understand pointers, function pointers, memory allocation (malloc())
• Comfortable navigating around an existing code base.
• Able to debug an implementation.

10

Why does this fail?
void set(int *x)
{

*x = 1;
}
void main()
{

int *a;
set(a);
printf(“%d\n”,*a);

}

11

Operating System Coding
Why does this fail?
void set(int *x)
{

*x = 1;
}
void main()
{

int a;
set(&a);
printf(“%d\n”,a);

}

12

3

Assignments

•We will be using OS/161,
• an educational operating system
• developed by the Systems Group At Harvard
• It contains roughly 20,000 lines of code and comments

• To encourage you to start early,
• Bonus 10% of awarded mark for the assignment for finishing a week

early
• See course outline for exact details

• Read the fine print!!!!

• If you start a couple days before they are due, you are likely
to be late.

13

Assignments

5.8

14.4

1.6 1 1
3 2.8

4.6

49.4

5.6
2.4 1.2 1.6 0.8 0.7 1.1

3

0

10

20

30

40

50

60

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 o

f S
tu

de
nt

s

Relative submission day

Historical Assignment Submission Statistics

14

16% late

Assignments

• Late penalty
• 4% of total assignment value per day

• Assignment is worth 20%
• You get 18, and are 2 days late
• Final mark = 18 – (20*0.04*2) = 16 (16.4)

• Assignments are only accepted up to four days late.
• Greater than 4 days = 0

15

Assignments
• Warmup assignment (ASST0)

• Done individually
• Available NOW!!!!

• Approximate due dates below
• ASST2 and ASST3 are in pairs

• Info on how to pair up available soon
• Additional, advanced versions of the assignment 2 & 3

• Available bonus marks are small compared to amount of effort required.
• Student should do it for the challenge, not the marks.
• Attempting the advanced component is not a valid excuse for failure to

complete the normal component of the assignment

16

Assignment Due

ASST0 Week 2

ASST1 Week 4

ASST2 Week 7

ASST3 Week 10

Assignments

Submission test failed. Continue with submission
(y/n)? y

• Lazy/careless submitter penalty: 15%

• Submitted the wrong assignment version penalty: 15%
• Assuming we can validly date the intended version

17

Plagiarism

•We take cheating seriously!!!
•We systematically check for plagiarised code

• Penalties are generally sufficient to make it difficult to
pass

•We can google as easy as you can
• Some solutions are wrong
• Some are greater scope than required at UNSW

• You do more than required
• Makes your assignment stick out as a potential plagiarism case

•Avoid developing your code in public bitbucket and
github repositories!!
• Obtain a free academic account.

18

4

Exams

• There is NO mid-session
• The final written exam is 2 hours
• Supplementary exam are available according to UNSW &

school policy, not as a second chance.
• Medical or other special consideration only

19

Piazza Forums

• Forum for Q/A about assignments and course
• Ask questions there for the benefit of everybody
• Share your knowledge for the benefit of your peers
• Look there before asking
• Apps for phone

• https://piazza.com/
• Longer link on class web page

• You will have received an invite from them to your UNSW email address.
• Please join and contribute.

20

Consultations/Questions

• Questions should be directed to the forum.
• Admin and Personal queries can be directed to the class

account cs3231@cse.unsw.edu.au
• We reserve the right to ignore email sent directly to us

(including tutors) if it should have been directed to the
forum.

• Consultation Times
• See course web site.
• Must email (cs3231@cse) at least an hour in advance and show up on

time.

21

Back to Operating Systems
Chapter 1 – 1.3

Chapter 1.5 – 1.9

Learning Outcomes

•High-level understand what is an operating system
and the role it plays
•A high-level understanding of the structure of

operating systems, applications, and the
relationship between them.

23

Operating System Kernel
• Portion of the operating system that is running in privileged

mode
• Usually resident (stays) in main memory
• Contains fundamental functionality

• Whatever is required to implement other services
• Whatever is required to provide security

• Contains most-frequently used functions
• Also called the nucleus or supervisor

24

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

5

The Operating System is Privileged

• Applications should not be able to interfere or bypass the
operating system
• OS can enforce the “extended machine”
• OS can enforce its resource allocation policies
• Prevent applications from interfering with each other

25

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Memory

Delving Deeper:
The Structure of a Computer System

26

Operating System

System Libraries

Application

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Memory

The Structure of a Computer System

27

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

OS interacts via load and
store instructions to all
memory, CPU and device
registers, and interrupts

Memory

The Structure of a Computer System

28

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Applications interact with
themselves and via
function calls to library
procedures

Memory

The Structure of a Computer System

29

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Interaction via

System Calls

Privilege-less OS

• Some Embedded OSs have no
privileged component
• e.g. PalmOS, Mac OS 9, RTEMS
• Can implement OS functionality, but

cannot enforce it.
• All software runs together
• No isolation
• One fault potentially brings down entire

system

30

6

A Note on System Libraries

System libraries are just that, libraries of support functions
(procedures, subroutines)
• Only a subset of library functions are actually systems calls

• strcmp(), memcpy(), are pure library functions
• manipulate memory within the application, or perform computation

• open(), close(), read(), write() are system calls
• they cross the user-kernel boundary, e.g. to read from disk device
• Implementation mainly focused on passing request to OS and returning result to

application

• System call functions are in the library for convenience
• try man syscalls on Linux

31

Operating System Software

• Fundamentally, OS functions the same
way as ordinary computer software
• It is a program that is executed (just like

applications)
• It has more privileges

• Operating system relinquishes control
of the processor to execute other
programs
• Reestablishes control after

• System calls
• Interrupts (especially timer interrupts)

32

Memory

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Operating System Internal Structure?

33

Classic Operating System Structure

• The layered approach
a) Processor allocation and

multiprogramming
b) Memory Management
c) Devices
d) File system
e) Users

– Each layer depends on
the inner layers

34

a b c d e

Operating System Structure

•In practice, layering is only a guide
•Operating Systems have many interdependencies

• Scheduling on virtual memory
• Virtual memory (VM) on I/O to disk
• VM on files (page to file)
• Files on VM (memory mapped files)
• And many more…

35

The Monolithic Operating System Structure

• Also called the “spaghetti
nest” approach
• Everything is tangled up with

everything else.

• Linux, Windows, ….

36

7

The Monolithic Operating System Structure

• However, some
reasonable structure
usually prevails

37

Bowman, I. T., Holt, R. C., and Brewster, N. V. 1999. Linux as a case study: its extracted software
architecture. In Proceedings of the 21st international Conference on Software Engineering (Los
Angeles, California, United States, May 16 - 22, 1999). ICSE '99. ACM, New York, NY, 555-563.
DOI= http://doi.acm.org/10.1145/302405.302691

38

The end

39

