
1

I/O Management

Intro

Chapter 5



Learning Outcomes

• A high-level understanding of the 
properties of a variety of I/O devices.

• An understanding of methods of 
interacting with I/O devices.

• An appreciation of the trend towards 
offloading more I/O handling to devices 
themselves.

2



3

I/O Devices

• There exists a large variety of I/O devices:

– Many of them with different properties

– They seem to require different interfaces to 

manipulate and manage them

• We don’t want a new interface for every device

• Diverse, but similar interfaces leads to code 

duplication

• Challenge:

– Uniform and efficient approach to I/O 



4

Categories of I/O Devices (by usage)

• Human interface

– Used to communicate with the user

– Printers, Video Display, Keyboard, Mouse

• Machine interface

– Used to communicate with electronic equipment

– Disk and tape drives, Sensors, Controllers, Actuators

• Communication

– Used to communicate with remote devices

– Ethernet, Modems, Wireless



5

I/O Device Handling

• Data rate

– May be differences of several orders of 

magnitude between the data transfer rates

– Example: Assume 1000 cycles/byte I/O

• Keyboard needs 10 KHz processor to keep up

• Gigabit Ethernet needs 100 GHz processor…..



6

Sample Data Rates

USB 3.0 625 MB/s (5 Gb/s)
Thunderbolt 2.5GB/sec (20 Gb/s)
PCIe v3.0 x16 16GB/s 



7

I/O Device Handling Considerations

• Complexity of control

• Unit of transfer
– Data may be transferred as a stream of bytes for a 

terminal or in larger blocks for a disk

• Data representation
– Encoding schemes

• Error conditions
– Devices respond to errors differently

• lp0: printer on fire!

– Expected error rate also differs



8

I/O Device Handling Considerations

• Layering
– Need to be both general and specific, e.g.

– Devices that are the same, but aren’t the 
same

• Hard-disk, USB disk, RAM disk

– Interaction of layers
• Swap partition and data on same disk

• Two mice

– Priority
• Keyboard, disk, network



9

Accessing I/O Controllers

a) Separate I/O and memory space
– I/O controller registers appear as I/O ports 

– Accessed with special I/O instructions

b) Memory-mapped I/O
– Controller registers appear as memory

– Use normal load/store instructions to access

c) Hybrid
– x86 has both ports and memory mapped I/O 



10

Bus Architectures

(a) A single-bus architecture

(b) A dual-bus memory architecture



11

Intel IXP420



12

Interrupts

• Devices connected to an Interrupt Controller via 
lines on an I/O bus (e.g. PCI)

• Interrupt Controller signals interrupt to CPU and 
is eventually acknowledged. 

• Exact details are architecture specific.



I/O Interaction

13



14

• Also called polling, or busy 
waiting

• I/O module (controller) performs 
the action, not the processor

• Sets appropriate bits in the I/O 
status register

• No interrupts occur

• Processor checks status until 
operation is complete
– Wastes CPU cycles

Programmed I/O



15

Interrupt-Driven I/O

• Processor is interrupted when I/O 

module (controller) ready to 

exchange data

• Processor is free to do other work

• No needless waiting

• Consumes a lot of processor time 

because every word read or 

written passes through the 

processor



16

Direct Memory Access
• Transfers data directly between Memory and Device

• CPU not needed for copying

CPU Memory Device

CPU Memory Device

DMA

Controller

DMA
Controller

DMA 

Controller in 

Device

Separate 

DMA 

Controller



17

Direct Memory Access

• Transfers a block of data 
directly to or from memory

• An interrupt is sent when 
the task is complete

• The processor is only 
involved at the beginning 
and end of the transfer



18

DMA Considerations
� Reduces number of interrupts

– Less (expensive) context switches or kernel entry-exits

� Requires contiguous regions (buffers)
– Copying

– Some hardware supports “Scatter-gather”

• Synchronous/Asynchronous

• Shared bus must be arbitrated (hardware)
– CPU cache reduces (but not eliminates) CPU need for bus

CPU Memory Device



19

The Process to Perform DMA 

Transfer



Device Evolution - Complexity 

and Performance

20



21

Evolution of the I/O Function

• Processor directly controls a peripheral 
device
– Example: CPU controls a flip-flop to 

implement a serial line

CPU Memory
Flip
Flop Serial 

Line
Bus

‘1’ = 5V

‘0’ = 0V



22

Evolution of the I/O Function

• Controller or I/O module is added

– Processor uses programmed I/O without interrupts

– Processor does not need to handle details of external devices

– Example: A Universal Asynchronous Receiver Transmitter

• CPU simply reads and writes bytes to I/O controller

• I/O controller responsible for managing the signaling

CPU Memory UART

Serial 

Line
Bus



23

Evolution of the I/O Function

• Controller or I/O module with interrupts

– Processor does not spend time waiting for an 

I/O operation to be performed

CPU Memory UART

Serial 

Line
Bus

Interrupt 
Line



24

Evolution of the I/O Function

• Direct Memory Access

– Blocks of data are moved into memory 

without involving the processor

– Processor involved at beginning and end only

CPU Memory UART

Serial 

Line
Bus

Interrupt 
Line



25

Evolution of the I/O Function

• I/O module has a separate processor

– Example: SCSI controller

• Controller CPU executes SCSI program code out 

of main memory

CPU Memory
SCSI 

Controller

SCSI

CableBus

Interrupt 
Line CPU



26

Evolution of the I/O Function
• I/O processor

– I/O module has its own local memory, internal bus, etc.

– Its a computer in its own right

– Example: Myrinet 10 gigabit NIC

CPU Memory
Myrinet

Controller

Bus

Interrupt 
Line CPU RAM



27



General Trend

• More specialised hardware

• Offloading more functionality into 
hardware

– Reduced load on CPU

• Improved performance

28


