Case study: ext2 FS

E2
e | HIE UNIVERSITY OF
@8l NEW SOUTH WALES

LI
P

The ext2 file system

« Second Extended Filesystem
— The main Linux FS before ext3
— Evolved from Minix filesystem (via “Extended Filesystem”)

« Features
— Block size (1024, 2048, and 4096) configured at FS creation
— inode-based FS

— Performance optimisations to improve locality (from BSD
FFS)

 Main Problem: unclean unmount 2>e2fsck
— Ext3fs keeps a journal of (meta-data) updates

— Journal is a file where updates are logged
— Compatible with ext2fs

BL| THE UNIVERSITY OF
NEW SOUTH WALES

]
L

Recap: I-nodes

« Each file is represented by an inode on disk

* |node contains the fundamental file metadata
— Access rights, owner, accounting info
— (partial) block index table of a file

 Each inode has a unigue number
— System oriented name
— Try ‘Is =i’ on Unix (Linux)

« Directories map file names to inode numbers
— Map human-oriented to system-oriented names

=
gLl THE UNIVERSITY OF
NEW SOUTH WALES

]
L

Recap: i-nodes

File Attributes

Address of disk block O el
Address of disk block 1 e
Address of disk block 2
Address of disk block 3 >
Address of disk block 4 —
Address of disk block 5 —
Address of disk block 6 —
Address of disk block 7 ——
Address of block of pointers -

Disk block

containing

additional

disk addresses

mode

;;g Ext2 I-nodes
atime
ctime * Mode
mtime — Type
size * Regular file or directory

— Access mode
* 'WXIWXrwx

block count
reference count

direct block r i
irect blocks _ User ID
(12) .
: — « Gid
single indirect
— Group ID

double indirect
triple indirect

=
gLl THE UNIVERSITY OF
NEW SOUTH WALES

]
L

mode
;;g Inode Contents
atime "
ctime * atime
mtime — Time of last access
size e ctime
block count — Time when file was created
reference count e mtime
direct blocks — Time when file was last
(12) modified
single indirect
double indirect
triple indirect
-==- THE UNIVERSITY OF 6

NEW SOUTH WALES

mode
uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(12)

single indirect

double indirect

triple indirect

Inode Contents - Size

« What does ‘size of a file’ really
mean?

— The space consumed on disk?
» With or without the metadata?

— The number of bytes written to the file?
— The highest byte written to the file?

0 N
1File system

mode
uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(12)

single indirect

double indirect

triple indirect

Inode Contents - Size

« What does ‘size of a file’ really
mean?

— The space consumed on disk?
» With or without the metadata?

— The number of bytes written to the file?
— The highest byte written to the file?

0 N
1File system

H
in

mode
uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(12)

single indirect

double indirect

triple indirect

Inode Contents - Size

« What does ‘size of a file’ really
mean?

— The space consumed on disk?
» With or without the metadata?

— The number of bytes written to the file?
— The highest byte written to the file?

0 N
1File system

H
mm

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(12)

single indirect

double indirect

triple indirect

ot

- THE UNIVERSITY OF
NEW SOUTH WALES

Inode Contents
¢ Size
— Offset of the highest byte written
* Block count

— Number of disk blocks used by the file.

— Note that number of blocks can be much
less than expected given the file size

* Files can be sparsely populated

— E.g. write(f,"hello”); Iseek(f, 1000000);
write(f, “world”);

— Only needs to store the start and end of file,
not all the empty blocks in between.

— Size = 1000005
— Blocks = 2 + any indirect blocks

10

mode
ud ___ [node Contents —_
gid « Direct Blocks
atime — Block numbers of first 12 blocks in the 11
ctime file 10
mtime — Most files are small 9
Si Ze . ?/r\lloedcean find blocks of file directly from the 3
block count 0 110 7] e
reference count 31 8| 14
direct blocks (12) —— T o
40,58,26,8,12, L 11 4
44,62,30,10,42,3,21 — D V4 3
single indirect &Q\ 2
double indirect O 19— 5 1
triple indirect T 0
56 1 {6 |63
> R Disk 1

Problem

 How do we store files with data at offsets
greater than 12 blocks?
— Adding significantly more direct entries in the

inode results in many unused entries most of
the time.

=
gLl THE UNIVERSITY OF 12
NEW SOUTH WALES

]
L

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks (12)
40,58,26,8,12,
44,62,30,10,42,3,21

single indirect: 32

Inode Contents

*Single Indirect Block

—Block number of a block containing

block numbers

28

29

29

double indirect

triple indirect

= THE UNIVERSITY OF

(A

46

61

43

0 10 /
3 38 4
11
2 12|13 7
Sl 14
0 91175 15
56 1 16| 6 |63

Disk

13

o=NwWhgoN®O S EGoRrao N

Single Indirection

* Requires two disk access to read
— One for the indirect block; one for the target block

« Max File Size

— Assume 1Kbyte block size, 4 byte block numbers
12 * 1K+ 1K/4 * 1K = 268 KiB

* For large majority of files (< 268 KiB), given the inode,
only one or two further accesses required to read any
block in file.

=
gl THE UNIVERSITY OF
NEW SOUTH WALES

]
L

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks (12)
40,58,26,8,12,
44,62,30,10,42,3,21

single indirect: 32

double indirect

triple indirect

=
gLl THE UNIVERSITY OF
NEW SOUTH WALES

]
L

Inode Contents

*Double Indirect Block

—Block number of a block containing
block numbers of blocks containing
block numbers

15

mode

uid Inode Contents

gid -Double Indirect Block
atime —Block number of a block containing
ctime block numbers of blocks containing
mtime bloc.:k numblers
Size *Triple Indirect B
—Block number of a block containing
block count block numbers of blocks containing
reference count block numbers of blocks containing
direct blocks (12) block numbers &
40,58,26,8,12,

44,62,30,10,42,3,21

single indirect: 32

double indirect
triple indirect

=
gLl THE UNIVERSITY OF 16
=2 NEW SOUTH WALES

]
L

UNIX Inode Block Addressing
Scheme

mode
2 owners
: - data m B P
3 timestamps
otz - data 1T —t— data
block count o S
' | - data | -
direct blocks
(12) - data
=~ data = data
single indirect - - data data
double indirect =
triple indirect -
THE UNIVERSITY OF 17

NEW SOUTH WALES

UNIX Inode Block Addressing
Scheme

* Assume 8 byte blocks, containing 4 byte
block numbers

e => each block can contain 2 block
numbers (1-bit index)

* Assume a single direct block number in
inode

L] THE UNIVERSITY OF
NEW SOUTH WALES

O Block numbers for Single Indirect
corresponding file offset Block

Level 2 Double
Indirect Blocks

Level 1 Double Subset of Inode
Indirect Block

/

Level 1 Triple
Indirect Block

P N ©WoNOORAWN =

Level 2 Triple
Indirect Block

Level 3 Triple
Indirect Block

B LE UNIVERSITY OF .
= NEW SOUTH WALES DISk 19

Max File Size

* Assume 4 bytes block numbers and 1K blocks

« The number of addressable blocks

— Direct Blocks = 12

— Single Indirect Blocks = 256

— Double Indirect Blocks = 256 * 256 = 65536

— Triple Indirect Blocks = 256 * 256 * 256 = 16777216

« Max File Size
12 + 256 + 65536 + 16777216 = 16843020 blocks = 16 GB

B THE UNIVERSITY OF 20
NEW SOUTH WALES

]
L

Where Is the data block number

stored?

 Assume 4K blocks, 4 byte block numbers, 12 direct
blocks

* A1 byte file produced by
— Iseek(fd, 1048576, SEEK _SET) /* 1 megabyte */
— write(fd, “x”, 1)

 What if we add

— Iseek(fd, 5242880, SEEK SET) /* 5 megabytes */
— write(fd, “x”, 1)

||
r

- THE UNIVERSITY OF 21

Where Is the block number Is this
tree?

mode
2 owners
: - data m B P
3 timestamps
otz - data 1T —t— data
block count o S
' | - data | -
direct blocks
(12) - data
=~ data = data
single indirect - - data data
double indirect =
triple indirect -
THE UNIVERSITY OF 22

NEW SOUTH WALES

Solution?

4K blocks, 4 byte block numbers => 1024 block numbers in
indirect blocks (10 bit index)

0--11 Direct blocks

12 --- 1035 (11 + 1024) Single-indirect blocks
1036 --- 1049611 (1035 + 1024 Double-indirect blocks
*1024)

1049612 --- ??7?7? Triple-indirect blocks

File (not to scale)

Solution
Block #range | location

Address = 1048576 ==>
block number=1048576/4096=256

Single indirect offset = 256 — 12
=244

0--11
12 --- 1035
1036 --- 1049611

1049612 --- ?7?7?7?

Direct blocks
Single-indirect blocks

Double-indirect
blocks

Triple-indirect blocks

Where Is the block number Is this
tree?

mode
2 owners
: - data m B e
3 timestamps
otz - data 1T —t— data
block count o (S—
[- data N [
direct blocks
(12) - data
244th
entry _ 1 data = data
single indirect - - data data
double indirect ——=
triple indirect -
L] THE UNIVERSITY OF 25

NEW SOUTH WALES

Solution
Address = 5249880 ==> m

Block number = 5242880/4096 Direct blocks

=1280 12 --- 1035 Single-indirect blocks
Double indirect offset (20-bit) S
= 1280 - 1036 1049612 --- ???? Triple-indirect blocks
= 244
Top 10 bits =0

Lower 10 bits = 244

Where Is the block number Is this
tree?

mode oth entry
2 owners . . entry . i -
3 timestamps /] L
size =~ data \ ol —
block count o S
[- data N [—
direct blocks
(12) - data
=~ data = data
single indirect - - data data
double indirect ——=
triple indirect >
BL| THE UNIVERSITY OF 27

NEW SOUTH WALES

Some Best and Worst Case
Access Patterns

Assume Inode already in memory

« Toread 1 byte
— Best:

* 1 access via direct block

— Worst:
* 4 accesses via the triple indirect block
 To write 1 byte
— Best:

» 1 write via direct block (with no previous content)
— Worst:

» 4 reads (to get previous contents of block via triple indirect) + 1 write (to
write modified block back)

28

Worst Case Access Patterns with

Unallocated Indirect Blocks
 Worst to write 1 byte

— 4 writes (3 indirect blocks; 1 data)
— 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data)

— 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1;
write 1 data)

— 3 reads, 2 writes (read 2, read-write 1; write 1 data)

 Worst to read 1 byte
— If reading writes a zero-filled block on disk
— Worst case is same as write 1 byte

— If not, worst-case depends on how deep is the current indirect
block tree.

=8
W[
L

I THE UNIVERSITY OF 29
NEW SOUTH WALES

Inode Summary

« The inode (and indirect blocks) contains the on-disk
metadata associated with a file
— Contains mode, owner, and other bookkeeping
— Efficient random and sequential access via indexed allocation
— Small files (the majority of files) require only a single access

— Larger files require progressively more disk accesses for random
access

» Sequential access is still efficient
— Can support really large files via increasing levels of indirection

.

- THE UNIVERSITY OF 30
NEW SOUTH WALES

]
L

Where/How are Inodes Stored

Boot | Super
Block | Block - Data Blocks

« System V Disk Layout (s5fs)
— Boot Block

» contain code to bootstrap the OS

— Super Block
« Contains attributes of the file system itself

* e.g. size, number of inodes, start block of inode array, start of data block
area, free inode list, free data block list

— Inode Array
— Data blocks

]
it

- THE UNIVERSITY OF 21

]
L

Some problems with s5fs

Inodes at start of disk; data blocks end

— Long seek times
« Must read inode before reading data blocks

Only one superblock
— Corrupt the superblock and entire file system is lost

Block allocation was suboptimal

— Consecutive free block list created at FS format time

 Allocation and de-allocation eventually randomises the list resulting in
random allocation

Inode free list also randomised over time
— Directory listing resulted in random inode access patterns

.

BL| THE UNIVERSITY OF 32

NEW SOUTH WALES

Berkeley Fast Filesystem (FFS)

*Historically followed sb5fs
—Addressed many limitations with s5fs
—ext2fs mostly similar

S THE UNIVERSITY OF 33
NEW SOUTH WALES

Layout of an Ext2 FS

Boot [Block Group Block Group
Block 0 n
Partition:

—Reserved boot block,
—Collection of equally sized block groups
—All block groups have the same structure

34

Layout of a Block Group

Group Data
Super Descrip- | Block Ipode Inode Data blocks
Block : Bitmap | Table
tors Bitmap
1 blk n blks 1 blk 1 blk m blks kblks
*Replicated super block
—For e2fsck

*Group descriptors
Bitmaps identify used inodes/blocks
*All block groups have the same number of data blocks

*Advantages of this structure:

—Replication simplifies recovery

—Proximity of inode tables and data blocks (reduces seek time)

L THE UNIVERSITY OF

35

Superblocks

*Size of the file system, block size and similar
parameters

Overall free inode and block counters

Data indicating whether file system check is
needed:
—Uncleanly unmounted

—Inconsistency
—Certain number of mounts since last check

—Certain time expired since last check

*Replicated to provide redundancy to aid
recoverability

36

Group Descriptors

[_ocation of the bitmaps

*Counter for free blocks and inodes in this
group
‘Number of directories in the group

-- THE UNIVERSITY OF
NEW SOUTH WALES

37

[Tena
o5

Performance considerations

*EXT2 optimisations

— Block groups cluster related inodes and data blocks

—Pre-allocation of blocks on write (up to 8 blocks)
8 bits in bit tables
*Better contiguity when there are concurrent writes

—Aim to store files within a directory in the same group

THE UNIVERSITY OF 38

S| NEW SOUTH WALES

W[
]

Thus far...

*Inodes representing files laid out on disk.

*Inodes are referred to by number!!!
—How do users name files? By number?

THE UNIVERSITY OF

39

Ext2fs Directories

inode rec len |name len| type name...

Directories are files of a special type

«Consider it a file of special format, managed by the kernel, that uses most
of the same machinery to implement it

—Inodes, etc...

*Directories translate names to inode numbers
Directory entries are of variable length

*Entries can be deleted in place
*inode =0
*Add to length of previous entry

BL| THE UNIVERSITY OF 40
NEW SOUTH WALES

]
L

Ext2fs Directories

7 Inode No
13 » " Rec Length
’ f1 - InOde 7 122 Na(:nce Ii]r?gth

1700 Name

“file2” = inode 43 »
“f3” = inode 85 156

T7T"e
2’000
85
12

300

1 THE UNIVERSITY OF 41
%l NEW SOUTH WALES

[Tena
o5

Hard links

7 Inode No
*Note that inodes 122 NanCeLfgf;Th
can have more than 100 Name
one name -
—Called a Hard Link - ‘i,5‘l, -
—Inode (file) 7 has three 2000
names 172
*“f1” = inode 7 2
“file2” = inode 7 if ‘3(;0 L
*“f3” = inode 7
B THE UNIVERSITY OF 42

n NEW SOUTH WALES

mode

uid Inode Contents

gld *\We can have many names for the same inode.
at!me ‘WWhen we delete a file by name, i.e. remove the
ctime directory entry (link), how does the file system
mtime know when to delete the underlying inode?
sjze —Keep a reference count in the inode
blOCk count *Adding a name (directory entry) increments the count

*Removing a name decrements the count

reference count *If the reference count == 0, then we have no names for the
direct blocks (12) inode (it is unreachable), we can delete the inode (underlying

40.,58,26.8.12, file or directory)
44.62,30,10,42,3,21

single indirect: 32
double indirect
triple indirect

ot

- THE UNIVERSITY OF 43
NEW SOUTH WALES

]
L

Hard links

C's directory B's directory C's directory B's directory
\ \
/ \ / \
Owner =C Owner=C Owner=C
Count = 1 Count=2 Count = 1

: : :
O O O

(a) (b) (c)
(a) Situation prior to linking
(b) After the link is created
(c)After the original owner removes the file

B THE UNIVERSITY OF

Symbolic links

» A symbolic link is a file that contains a
reference to another file or directory

— Has its own inode and data block, which
contains a path to the target file

— Marked by a special file attribute
— Transparent for some operations
— Can point across FS boundaries

=
gLl THE UNIVERSITY OF
NEW SOUTH WALES

]
%

Ext2fs Directories

7 Inode No

Deleting a filename 12 Rec Length
2 Name Length

—rm file2 100 Name

5] :':.
Fel)

46

[[gea
o5

Ext2fs Directories

*Deleting a filename
—rm file2

*Adjust the record
length to skip to next
valid entry

THE UNIVERSITY OF

NEW SOUTH WALES

Inode No
Rec Length
Name Length

Name

47

FS reliability

* Disk writes are buffered in RAM

— OS crash or power outage ==> lost data

— Commit writes to disk periodically (e.g., every
30 sec)

— Use the sync command to force a FS flush

* FS operations are non-atomic

— Incomplete transaction can leave the FS in an
Inconsistent state

=
gLl THE UNIVERSITY OF
NEW SOUTH WALES

]
%

FS reliability

dir entries I-nodes data blocks

_
I
]

« Example: deleting a file
1.Remove the directory entry

2.Mark the i-node as free
3.Mark disk blocks as free

oy

TRL] THE UNIVERSITY OF
NEW SOUTH WALES

FS reliability

dir entries I-nodes data blocks

« Example: deleting a file
1.Remove the directory entry--> crash
2.
3.

The I-node and data blocks are lost

TRL] THE UNIVERSITY OF
NEW SOUTH WALES

FS reliability

dir entries I-nodes data blocks

_
I
]

« Example: deleting a file
1.Mark the i-node as free --> crash
2.
3.

The dir entry points to the wrong file

TRL] THE UNIVERSITY OF
NEW SOUTH WALES

FS reliability

dir entries I-nodes data blocks
S 2
R K
I ~>.I3 >

« Example: deleting a file
1.Mark disk blocks as free --> crash
2.
3.

The file randomly shares disk blocks with other files

TR THE UNIVERSITY OF
NEW SOUTH WALES

FS reliability

o e2fsck

— Scans the disk after an unclean shutdown and
attempts to restore FS invariants

» Journaling file systems
— Keep a journal of FS updates
— Before performing an atomic update sequence,
— write it to the journal

— Replay the last journal entries upon an unclean
shutdown

— Example: ext3fs

THE UNIVERSITY OF
i NEW SOUTH WALES

