Introduction to Operating Systems

Chapter 1-1.3
Chapter 1.5 -1.9

Learning Outcomes

High-level understand what is an operating system
and the role it plays
A high-level understanding of the structure of

operating systems, applications, and the
relationship between them.

Some knowledge of the services provided by
operating systems.

Exposure to some details of major OS concepts.

UNSW 2 UNSW
o UNSY o UNSY
What is an Operating System?
y ! o
cHa
Oigial Dspiay Processor oo | System Memary
Interface (DDI)
(3 interfaces)
Note:2 DMMs CH s not
opporiedon al SKUs,
A kit Fstlo Dap et Mecta netace 20
(DMI2.0) (x4)
chros.ofr - x2)
Windows*?
usB3.0 Analog Display
(up to 6 Ports) (VGA)
Platform Controller
Hub (PCH)
ARG EETTE
(up to 6 Ports) (up to 8 Ports)
sPI Intel High
| (Intel HD Audio)
! LPC
Trosied Pl SMBus 20
Nosle (PN 12
opi0s
UNSW ; : “+ UNSW
L o Block Diagram of Haswell Platform Architecture rpww.pcaestcon o R

Role 1: The Operating System is an
Abstract Machine

Extends the basic hardware with added functionality

Provides high-level abstractions
* More programmer friendly

» Common core for all applications
— E.g. Filesystem instead of just registers on a disk controller

It hides the details of the hardware
» Makes application code portable

/

Disk L

D

o~

VA T~

Memory = ./

e~

/ T

CPU - ,\:/
Network =

—

Bandwidth | i

Role 2: The Operating System is

a Resource Manager

Responsible for allocating resources to users and
processes

Must ensure

» No Starvation

* Progress

« Allocation is according to some desired policy

— First-come, first-served; Fair share; Weighted fair share; limits
(quotas), etc...

» Overall, that the system is efficiently used

Structural (Implementation) View: the
Operating System is the Privileged
Component

User Mode

Privileged Mode

Operating System

Hardware

s

Operating System Kernel

Portion of the operating system that is running in privileged
mode

Usually resident (stays) in main memory

Contains fundamental functionality

» Whatever is required to implement other services

* Whatever is required to provide security

Contains most-frequently used functions

Also called the nucleus or supervisor

The Operating System is Privileged

Applications should not be able to interfere or bypass the
operating system

« OS can enforce the “extended machine”

« OS can enforce its resource allocation policies

< Prevent applications from interfering with each other

User Mode

Privileged Modg

Operating System

Hardware

10 @uvsw

Delving Deeper:
The Structure of a Computer System

User Mode

Kernel Mode

- Operating System
G

Memory

1 Buosw

The Structure of a Computer System

User Mode

Kernel Mode

OS interacts via load
and store instructions
(OS] to all memory, CPU

and device registers,

\ and interrupts
Memory

12 :“-‘

|
o)
s

The Structure of a Computer System

Applications interact with
themselves and via
function calls to library
procedures
. System Libraries
[~ kemelMode T T T TTTTTTTTTTT
os
Memory
13 UNSW

The Structure of a Computer System

Interaction via
System Calls
System Libraries
User Mode
"~ kemelMode |~~~ T T T TTTTTTTT
Gae> L
Memory
14 UNSW

Privilege-less OS

CiC++/Ada application

Some Embedded OSs have no
privileged component

+ e.g. PaimOS, Mac OS 9, RTEMS

« Can implement OS functionality, but
cannot enforce it.
— All software runs together
— No isolation

— One fault potentially brings down entire
system

A Note on System Libraries

System libraries are just that, libraries of support functions
(procedures, subroutines)

« Only a subset of library functions are actually systems calls
— stremp(), memcpy(), are pure library functions
» manipulate memory within the application, or perform computation
— open(), close(), read(), write() are system calls
» they cross the user-kernel boundary, e.g. to read from disk device
» Implementation mainly focused on passing request to OS and returning result to application
« System call functions are in the library for convenience
— tryman syscalls on Linux

15 UNSW 16 UNSW
Operating System Software Major OS Concepts (Overview)
Processes
Concurrency and deadlocks
Fundamentally, OS functions the same Memory management
way as ordinary computer software Files
« Itis a program that is executed (just like - Scheduling and resource management
applicatons)
. Information Security and Protection
« It has more privileges User Mode
Operating system relinquishes control [-~ == ========%
of the processor to execute other Kemelhicde
rograms
prog 0s
» Reestablishes control after
— System calls
— Interrupts (especially timer interrupts) Memory
17 UNSW 18 UNSW

Processes

A program in execution
An instance of a program running on a computer

The entity that can be assigned to and executed on a
processor

A unit of resource ownership

o

Process
Memory

Minimally consist of three segments

. Text Stack
— contains the code (instructions)

* Data l

— Global variables

« Stack Gap
— Activation records of procedure/function/method I
— Local variables

Note:

« data can dynamically grow up
— E.g., malloc()-ing

« The stack can dynamically grow down Text
— E.g., increasing function call depth or recursion

Data

20 UNSW

Process state

Consists of three components
+ An executable program code
- text
« Associated data needed by the program
— Data and stack
Execution context of the program
— Registers, program counter, stack pointer
— Information the operating system needs to manage the process
» OS-internal bookkeeping, files open, etc...

Multiple processes creates
concurrency issues

(a) Apotential deadlock. (b) an actual deadlock.

22 UNSW

Memory Management

The view from thirty thousand feet
» Process isolation
— Prevent processes from accessing each others data
» Automatic allocation and management
— Users want to deal with data structures
— Users don’t want to deal with physical memory directly
 Protection and access control
— Still want controlled sharing

» OS services
— Virtual memory
— File system

Virtual Memory

Allows programmers to address memory from a logical point of view
« Gives apps the illusion of having RAM to themselves

 Logical addresses are independent of other processes

« Provides isolation of processes from each other

Can overlap execution of one process while swapping in/out others to
disk.

Virtual Memory Addressing

Processor
Virtual

Address

Memory management unit
(hardware) translates program
memory addresses to main
memory addresses.

Figure 2.10 Virtual Memory Addressing

25 UNSW

File System

Implements long-term store

Information stored in named objects called files

26 UNSW

Example File System

Root directory

Robbert Prof. White

21 UNSW

Scheduling and Resource Management

Fairness

« give equal and fair access to all processes
Differential responsiveness

« discriminate between different classes of jobs
Efficiency

« maximize throughput, minimize response time, and accommodate as many
uses as possible

Operating System Internal Structure?

Classic Operating System
Structure

The layered approach

a) Processor allocation and
multiprogramming 1

) Memory Manage
c) Devices
)

e) Users

— [Each layer depends on
the inner layers

Operating System Structure

In practice, layering is only a guide

Operating Systems have many interdependencies
— Scheduling on virtual memory

— Virtual memory (VM) on /O to disk

— VM on files (page to file)

— Files on VM (memory mapped files)

— And many more...

31 UNSW

=

The Monolithic Operating System Structure

Also called the “spaghetti nest” approach
« Everything is tangled up with everything
else.

Linux, Windows,

32

UNSW

=2

The Monolithic Operating System Structure

User Applications.

Win32 Subsystem I

User Mode
File System System sz
Pr
rosesses (Kernel32.dl, User2.on, GD32.al)
Session B a0l
Manager Environment Fungtions
WinLagon
However, some Memory - _—
Manager
reasonable structure NTDLLDLL
usually prevails ‘ 4 Wser Mode
E—
—= Kernel Mode
‘ Tnter-Process
Scheduler .’ P23 ‘ Communication
k\‘ Execulive Services
A‘ Kainel Moda Sysiem Process System Services
[
0 Manager e Win32K.SYS
Ll = inion
| | Pl | | | e
: iy Libracy Memory —a—mr—
Legend: exteacted dependency—» L | e
Fiia System Interface
Manager
I Pﬁrd»ms - KA?H!EF Grahics
Bowman, LT Holl, R C.,and Brewster, . . 1999 Linux as a case sudy: s exracied DDV | vare Apstraction Layer (HAL) %62 Dvers
Eraioerng Los e, Carirs o 1559 1G5 5. ACH I I I
3 3 Hardware
UNSW B unsw
35 Buwsw
2.2

