
1

1

Scheduling

Learning Outcomes

• Understand the role of the scheduler, and
how its behaviour influences the

performance of the system.

• Know the difference between I/O-bound
and CPU-bound tasks, and how they

relate to scheduling.

• Understand typical interactive and real

time scheduling approaches.

2

3

What is Scheduling?

– On a multi-programmed system

• We may have more than one Ready process

– On a batch system

• We may have many jobs waiting to be run

– On a multi-user system

• We may have many users concurrently using the
system

• The scheduler decides who to run next.

– The process of choosing is called scheduling.

4

Is scheduling important?

• It is not in certain scenarios
– If you have no choice

• Early systems
– Usually batching

– Scheduling algorithm simple

» Run next on tape or next on punch tape

– Only one thing to run
• Simple PCs

– Only ran a word processor, etc….

• Simple Embedded Systems
– TV remote control, washing machine, etc….

5

Is scheduling important?

• It is in most realistic scenarios
– Multitasking/Multi-user System

• Example
– Email daemon takes 2 seconds to process an email

– User clicks button on application.

• Scenario 1
– Run daemon, then application

» System appears really sluggish to the user

• Scenario 2
– Run application, then daemon

» Application appears really responsive, small email delay is
unnoticed

• Scheduling decisions can have a dramatic effect on the
perceived performance of the system
– Can also affect correctness of a system with deadlines

6

Application Behaviour

• Bursts of CPU usage alternate with periods of I/O

wait

2

7

Application Behaviour

a) CPU-Bound process

• Spends most of its computing

• Time to completion largely determined by received CPU time

8

Application Behaviour

b) I/O-Bound process
– Spend most of its time waiting for I/O to complete

• Small bursts of CPU to process I/O and request next I/O

– Time to completion largely determined by I/O request time

9

Observation

• We need a mix of CPU-bound and I/O-bound processes
to keep both CPU and I/O systems busy

• Process can go from CPU- to I/O-bound (or vice versa)
in different phases of execution

10

Key Insight

• Choosing to run an I/O-bound process delays a CPU-bound
process by very little

• Choosing to run a CPU-bound process prior to an I/O-bound
process delays the next I/O request significantly

– No overlap of I/O waiting with computation

– Results in device (disk) not as busy as possible

⇒ Generally, favour I/O-bound processes over CPU-bound processes

11

When is scheduling performed?
– A new process

• Run the parent or the child?

– A process exits

• Who runs next?

– A process waits for I/O

• Who runs next?

– A process blocks on a lock

• Who runs next? The lock holder?

– An I/O interrupt occurs

• Who do we resume, the interrupted process or the process that was
waiting?

– On a timer interrupt? (See next slide)

• Generally, a scheduling decision is required when a
process (or thread) can no longer continue, or when an
activity results in more than one ready process.

12

Preemptive versus Non-preemptive

Scheduling
• Non-preemptive

– Once a thread is in the running state, it continues until it
completes, blocks on I/O, or voluntarily yields the CPU

– A single process can monopolised the entire system

• Preemptive Scheduling
– Current thread can be interrupted by OS and moved to ready

state.

– Usually after a timer interrupt and process has exceeded its
maximum run time

• Can also be as a result of higher priority process that has become
ready (after I/O interrupt).

– Ensures fairer service as single thread can’t monopolise the
system

• Requires a timer interrupt

3

13

Categories of Scheduling Algorithms
• The choice of scheduling algorithm depends on the

goals of the application (or the operating system)

– No one algorithm suits all environments

• We can roughly categorise scheduling algorithms as

follows

– Batch Systems

• No users directly waiting, can optimise for overall machine
performance

– Interactive Systems

• Users directly waiting for their results, can optimise for users
perceived performance

– Realtime Systems

• Jobs have deadlines, must schedule such that all jobs (mostly) meet

their deadlines.

14

Goals of Scheduling Algorithms

• All Algorithms

– Fairness

• Give each process a fair share of the CPU

– Policy Enforcement

• What ever policy chosen, the scheduler should
ensure it is carried out

– Balance/Efficiency

• Try to keep all parts of the system busy

15

Goals of Scheduling Algorithms
• Interactive Algorithms

– Minimise response time

• Response time is the time difference between issuing a

command and getting the result

– E.g selecting a menu, and getting the result of that selection

• Response time is important to the user’s perception of the
performance of the system.

– Provide Proportionality

• Proportionality is the user expectation that short jobs will
have a short response time, and long jobs can have a long

response time.

• Generally, favour short jobs

16

Goals of Scheduling Algorithms
• Real-time Algorithms

– Must meet deadlines
• Each job/task has a deadline.

• A missed deadline can result in data loss or
catastrophic failure

– Aircraft control system missed deadline to apply brakes

– Provide Predictability
• For some apps, an occasional missed deadline is

okay
– E.g. DVD decoder

• Predictable behaviour allows smooth DVD
decoding with only rare skips

17

Interactive Scheduling

18

Round Robin Scheduling

• Each process is given a timeslice to run in

• When the timeslice expires, the next
process preempts the current process,
and runs for its timeslice, and so on
– The preempted process is placed at the end

of the queue

• Implemented with
– A ready queue

– A regular timer interrupt

4

19

Example

• 5 Process

– Process 1 arrives

slightly before process
2, etc…

– All are immediately
runnable

– Execution times
indicated by scale on

x-axis

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

20

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 1 unit

21

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 3 units

22

Round Robin
• Pros

– Fair, easy to implement

• Con
– Assumes everybody is equal

• Issue: What should the timeslice be?
– Too short

• Waste a lot of time switching between processes

• Example: timeslice of 4ms with 1 ms context switch = 20% round
robin overhead

– Too long
• System is not responsive

• Example: timeslice of 100ms
– If 10 people hit “enter” key simultaneously, the last guy to run will only

see progress after 1 second.

• Degenerates into FCFS if timeslice longer than burst length

23

Priorities

• Each Process (or thread) is associated with a

priority

• Provides basic mechanism to influence a

scheduler decision:

– Scheduler will always chooses a thread of higher
priority over lower priority

• Priorities can be defined internally or externally

– Internal: e.g. I/O bound or CPU bound

– External: e.g. based on importance to the user

24

Example

• 5 Jobs

– Job number equals

priority

– Priority 1 > priority 5

– Release and execution
times as shown

• Priority-driven

preemptively

scheduled

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

5

25

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

26

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

27

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

28

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

29

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

30

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

6

31

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

32

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

33

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

34

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

35

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

36

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

7

37

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

38

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

39

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

40

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

41

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

42

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

8

43

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

44

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

45

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

46

Priorities

• Usually implemented by multiple priority queues, with
round robin on each queue

• Con
– Low priorities can starve

• Need to adapt priorities periodically
– Based on ageing or execution history

47

Traditional UNIX Scheduler

• Two-level scheduler

– High-level scheduler
schedules processes
between memory and
disk

– Low-level scheduler is

CPU scheduler

• Based on a multi-

level queue structure

with round robin at

each level

48

Traditional UNIX Scheduler

• The highest priority (lower
number) is scheduled

• Priorities are re-calculated once
per second, and re-inserted in

appropriate queue

– Avoid starvation of low priority
threads

– Penalise CPU-bound threads

9

49

Traditional UNIX Scheduler

• Priority = CPU_usage +nice +base

– CPU_usage = number of clock ticks

• Decays over time to avoid

permanently penalising the process

– Nice is a value given to the process

by a user to permanently boost or

reduce its priority

• Reduce priority of background jobs

– Base is a set of hardwired, negative

values used to boost priority of I/O

bound system activities

• Swapper, disk I/O, Character I/O

50

Multiprocessor Scheduling

• Given X processes (or threads) and Y
CPUs,

– how do we allocate them to the CPUs

51COMP3231 04s1

A Single Shared Ready Queue

• When a CPU goes idle, it take the highest

priority process from the shared ready queue

52

Single Shared Ready Queue

• Pros
– Simple

– Automatic load balancing

• Cons
– Lock contention on the ready queue can be a

major bottleneck
• Due to frequent scheduling or many CPUs or both

– Not all CPUs are equal
• The last CPU a process ran on is likely to have

more related entries in the cache.

53

Affinity Scheduling

• Basic Idea

– Try hard to run a process on the CPU it ran

on last time

• One approach: Multiple Queue

Multiprocessor Scheduling

54

Multiple Queue SMP Scheduling

• Each CPU has its own ready queue

• Coarse-grained algorithm assigns processes to CPUs
– Defines their affinity, and roughly balances the load

• The bottom-level fine-grained scheduler:
– Is the frequently invoked scheduler (e.g. on blocking on I/O, a

lock, or exhausting a timeslice)

– Runs on each CPU and selects from its own ready queue

• Ensures affinity

– If nothing is available from the local ready queue, it runs a
process from another CPUs ready queue rather than go idle

• Termed “Work stealing”

10

55

Multiple Queue SMP Scheduling

• Pros

– No lock contention on per-CPU ready queues

in the (hopefully) common case

– Load balancing to avoid idle queues

– Automatic affinity to a single CPU for more

cache friendly behaviour

56

Real-time Scheduling

57

Real Time Scheduling

• Correctness of the system may depend not only

on the logical result of the computation but also

on the time when these results are produced,

e.g.

– Tasks attempt to control events or to react to events
that take place in the outside world

– These external events occur in real time and
processing must be able to keep up

– Processing must happen in a timely fashion,

• neither too late, nor too early

58

Real Time System (RTS)

• RTS accepts an activity A and guarantees its

requested (timely) behaviour B if and only if

– RTS finds a schedule

• that includes all already accepted activities Ai and the new

activity A,

• that guarantees all requested timely behaviour Bi and B, and

• that can be enforced by the RTS.

• Otherwise, RT system rejects the new activity A.

59

Typical Real Time Systems

– Control of laboratory experiments

– Robotics

– (Air) Traffic control

– Controlling Cars / Trains/ Planes

– Telecommunications

– Medical support (Remote Surgery, Emergency room)

– Multi-Media

• Remark: Some applications may have only soft-real

time requirements, but some have really hard real-time

requirements

60

Hard-Real Time Systems

• Requirements:
– Must always meet all deadlines (time guarantees)

– You have to guarantee that in any situation these
applications are done in time, otherwise dangerous
things may happen

Examples:
1. If the landing of a fly-by-wire jet cannot react to

sudden side-winds within some milliseconds, an
accident might occur.

2. An airbag system or the ABS has to react within
milliseconds

11

61

Soft-Real Time Systems

Requirements:

Must mostly meet all deadlines, e.g. 99.9% of cases

Examples:

1. Multi-media: 100 frames per day might be dropped
(late)

2. Car navigation: 5 late announcements per week are
acceptable

3. Washing machine: washing 10 sec over time might

occur once in 10 runs, 50 sec once in 100 runs.

Predictability, not Speed

• Real time systems are NOT necessarily
fast

• Real time systems can be slow, as long as

they are predictably so.

– It does not matter how fast they are, as long

as they meet their deadlines.

62

63

Properties of Real-Time Tasks
• To schedule a real time task, its properties

must be known a priori

• The most relevant properties are

– Arrival time (or release time) ai

– Maximum execution time (service time)

– Deadline di

64

Categories of Real time tasks

• Periodic

– Each task is repeated at a regular interval

– Max execution time is the same each period

– Arrival time is usually the start of the period

– Deadline is usually the end

• Aperiodic (and sporadic)

– Each task can arrive at any time (may have

minimum inter-arrival time)

65

Real-time scheduling approaches

• Static table-driven scheduling
– Given a set of tasks and their properties, a schedule

(table) is precomputed offline.
• Used for periodic task set

• Requires entire schedule to be recomputed if we need to
change the task set

• Static priority-driven scheduling
– Given a set of tasks and their properties, each task is

assigned a fixed priority

– A preemptive priority-driven scheduler used in
conjunction with the assigned priorities

• Used for periodic task sets

66

Real-time scheduling approaches

• Dynamic scheduling

– Task arrives prior to execution

– The scheduler determines whether the new

task can be admitted

• Can all other admitted tasks and the new task

meet their deadlines?

– If no, reject the new task

– Can handle both periodic and aperiodic tasks

12

67

Scheduling in Real-Time Systems

• We will only consider periodic systems

Schedulable real-time system

• Given

– m periodic events

– event i occurs within period Pi and requires Ci

seconds

• Then the load can only be handled if

1

1
m

i

i i

C

P
=

≤∑
68

Two Typical Real-time

Scheduling Algorithms
• Rate Monotonic Scheduling

– Static Priority priority-driven scheduling

– Priorities are assigned based on the period of

each task

• The shorter the period, the higher the priority

• Earliest Deadline First Scheduling

– The task with the earliest deadline is chosen

next

69

A Scheduling Example

• Three periodic Tasks

70

Is the Example Schedulable

• YES

1

1
m

i

i i

C

P
=

≤∑

808.0
50

5

40

15

30

10
=++

71

Two Schedules: RMS and EDF

72

Two Schedules: RMS and EDF

13

73

Let’s Modify the Example

Slightly
• Increase A’s CPU requirement to 15 msec

• The system is still schedulable

975.0
50

5

40

15

30

15
=++

74

RMS and EDF

75

RMS and EDF

76

RMS failed, why?

• It has been proven that RMS is only
guaranteed to work if the CPU utilisation is

not too high

– For three tasks, CPU utilisation must be less

than 0.780

• We were lucky with our original example

)12(
1

1

−≤∑
=

m

m

i i

i
m

P

C

77

EDF

• EDF always works for any schedulable set of

tasks, i.e. up to 100% CPU utilisation

• Summary

– If CPU utilisation is low (usual case, due to safety

factor in estimating execution times)

• Can use RMS which is simple and easy to implement

– If CPU utilisation is high

• Must use EDF

