
1

Anticipatory scheduling: a disk
scheduling framework to overcome

deceptive idleness in synchronous I/O

Proceedings of the 18th ACM symposium on Operating systems
principles, 2001 Anticipatory Disk Scheduling

Sitaram Iyer Peter Druschel

Rice University

Disk schedulers

Reorder available disk requests for

• performance by seek optimization,

• proportional resource allocation, etc.

Any policy needs multiple outstanding
requests to make good decisions!

With enough requests…

issued by process A issued by process B

E.g., Throughput = 21 MB/s (IBM Deskstar disk)

time

location on disk

With synchronous I/O…

E.g., Throughput = 5 MB/s
Next

schedule

issued by process A issued by process B

forced!

too
late!

forced!

Deceptive idleness

Process A is about to issue next request.

but

Scheduler hastily assumes that process A
has no further requests!

2

Proportional scheduler

Allocate disk service
in say 1:2 ratio:

Deceptive idleness

causes 1:1 allocation:

Next

BA BA

Prefetch

Overlaps computation with I/O.

Side-effect:
avoids deceptive idleness!

• Application-driven

• Kernel-driven

Prefetch

• Application driven – e.g. aio_read()

aio

• aio_read()Start an asynchronous read operation

• aio_write()Start an asynchronous write operation

• lio_listio()Start a list of asynchronous I/O operations

• aio_suspend()Wait for completion of one or more asynchronous I/O

operations

• aio_error()Retrieve the error status of an asynchronous I/O operation

• aio_return()Retrieve the return status of an asynchronous I/O

operation and free any associated system resources

• aio_cancel()Request cancellation of a pending asynchronous I/O

operation

• aio_fsync()Request synchronization of the media image of a file to

which asynchronous operations have been addressed

Aio usage patterns

Blocking

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_suspend()

Polling

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

do {

aio_error()

} until (completed)

Aio usage patterns

Signals

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

.

other()

stuff()

.

Signal handler

process_data()

3

Prefetch

• Application driven – e.g. aio_read()

– Application need to know their future

– Cumbersome programming model

– Existing apps need re-writing

– aio_read() optional

– May be less efficient than mmap

14

A

K

L

E

C

X

Physical Address

Space

F

E

D

C

B

A

K

Y

X

N

M

L

Y

N

F

D

B

Disk

L M

Memory

mapped file

Memory-

mapped files

and paging

Prefetch

• Kernel driven

– Less capable of knowing the future

– Access patterns difficult to predict, even
with locality

– Cost of misprediction can be high

– Medium files too small to trigger
sequential access detection

Anticipatory scheduling

Key idea: Sometimes wait for process
whose request was last serviced.

Keeps disk idle for short intervals.

But with informed decisions, this:

• Improves throughput

• Achieves desired proportions

When, How, How Long

• When should we or shouldn’t we delay disk
requests?

• How long do we delay disk requests, if we do
delay?

• How do we make an informed decision?

– What metrics might be helpful?

Cost-benefit analysis

Balance expected benefits of waiting

against cost of keeping disk idle.

Tradeoffs sensitive to scheduling policy

e.g., 1. seek optimizing scheduler

2. proportional scheduler

4

Statistics

For each process, measure:

1. Expected median and 95percentile thinktime

2. Expected positioning time

Median 95percentile

N
u

m
b

e
r

o
f

re
q

u
e

s
ts

Thinktime

last next

Benefit =

best.positioning_time — next.positioning_time

Cost = next.median_thinktime

Waiting_duration =

(Benefit > Cost) ? next.95percentile_thinktime : 0

Cost-benefit analysis
for seek optimizing scheduler

best := best available request chosen by scheduler

next := expected forthcoming request from

process whose request was last serviced

Proportional scheduler

Costs and benefits are different.

e.g., proportional scheduler:

Wait for process whose request was last serviced,

1. if it has received less than its allocation, and

2. if it has thinktime below a threshold (e.g., 3ms)

Waiting_duration = next.95percentile_thinktime

Experiments

• FreeBSD-4.3 patch + kernel module

(1500 lines of C code)

• 7200 rpm IDE disk (IBM Deskstar)

• Also in the paper:

15000 rpm SCSI disk (Seagate Cheetah)

Microbenchmark

0

5

10

15

20

25

Sequential Alternate Random within file

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Original
Anticipatory

no prefetch

no prefetch

no prefetch

prefetch

prefetch

prefetch

Real workloads

What’s the impact on real applications
and benchmarks?

Andrew benchmark

Apache web server
(large working set)

Database benchmark

• Disk-intensive

• Prefetching enabled

5

Andrew filesystem benchmark

Overall 8% performance improvement

0

5

10

15

20

25

30

mkdir cp stat scan gcc

-16% -5% -5% -54% +1.7%

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
in

u
te

s
)

Original

Anticipatory

5

6

2 (or more) concurrent clients

Lower
is

better

Apache web server

0

1

2

3

4

read

+29%

mmap

+71%

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

no prefetch

• CS.Berkeley trace

• Large working set

• 48 web clients

0

30

60

90

120

Update

One DB

+2%

Update

Two DBs

+30%

Select

One DB

+5%

Select

Two DBs

+60%

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a
c
ti

o
n

s
/s

e
c

)

Database benchmark

•MySQL DB

•Two clients

•One or two
databases
on same disk

GnuLD

0

2

4

6

8

10

12

One instance Two instances

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

Original

Anticipatory

Concurrent: 68% execution time reduction

Backup

Intelligent adversary

0

5

10

15

20

25

0 1 2 3 4 5 6 8 10 12

Number of reqests issued per cycle

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Original

Anticipatory

no prefetch

20%

Proportional scheduler

0

10

20

0 10 20 30

Experimental time (seconds)

S
e

rv
ic

e
 r

e
c

e
iv

e
d

 (
s

e
c

o
n

d
s

)

Original Anticipatory

0

30

60

90

120

T
h

ro
u

g
h

p
u

t
(t

p
s

)

Database benchmark: two databases, select queries

6

Conclusion

Anticipatory scheduling:

• overcomes deceptive idleness

• achieves significant performance
improvement on real applications

• achieves desired proportions

• and is easy to implement!

Anticipatory Disk Scheduling

Sitaram Iyer Peter Druschel

http://www.cs.rice.edu/~ssiyer/r/antsched/

