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Disk schedulers

Reorder available disk requests for

• performance by seek optimization,

• proportional resource allocation, etc.

Any policy needs multiple outstanding 
requests to make good decisions!

With enough requests…

issued by process A issued by process B

E.g., Throughput = 21 MB/s  (IBM Deskstar disk)

time

location on disk

With synchronous I/O…

E.g., Throughput = 5 MB/s
Next

schedule

issued by process A issued by process B

forced!

too 
late!

forced!

Deceptive idleness

Process A is about to issue next request.

but

Scheduler hastily assumes that process A 
has no further requests!
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Proportional scheduler

Allocate disk service 
in say 1:2 ratio:

Deceptive idleness 

causes 1:1 allocation:

Next

BA BA

Prefetch

Overlaps computation with I/O.

Side-effect: 
avoids deceptive idleness!

• Application-driven

• Kernel-driven

Prefetch

• Application driven – e.g. aio_read()

aio

• aio_read()Start an asynchronous read operation

• aio_write()Start an asynchronous write operation

• lio_listio()Start a list of asynchronous I/O operations

• aio_suspend()Wait for completion of one or more asynchronous I/O 

operations

• aio_error()Retrieve the error status of an asynchronous I/O operation

• aio_return()Retrieve the return status of an asynchronous I/O 

operation and free any associated system resources

• aio_cancel()Request cancellation of a pending asynchronous I/O 

operation

• aio_fsync()Request synchronization of the media image of a file to 

which asynchronous operations have been addressed

Aio usage patterns

Blocking

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_suspend()

Polling

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

do {

aio_error()

} until (completed)

Aio usage patterns

Signals

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

aio_read()

.

other()

stuff()

.

Signal handler

process_data()
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Prefetch

• Application driven – e.g. aio_read()

– Application need to know their future

– Cumbersome programming model

– Existing apps need re-writing

– aio_read() optional

– May be less efficient than mmap
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Prefetch

• Kernel driven

– Less capable of knowing the future

– Access patterns difficult to predict, even 
with locality

– Cost of misprediction can be high

– Medium files too small to trigger 
sequential access detection

Anticipatory scheduling

Key idea:  Sometimes wait for process 
whose request was last serviced.

Keeps disk idle for short intervals.

But with informed decisions, this:

• Improves throughput

• Achieves desired proportions

When, How, How Long

• When should we or shouldn’t we delay disk 
requests?

• How long do we delay disk requests, if we do 
delay?

• How do we make an informed decision?

– What metrics might be helpful?

Cost-benefit analysis

Balance expected benefits of waiting

against cost of keeping disk idle.

Tradeoffs sensitive to scheduling policy

e.g., 1. seek optimizing scheduler

2. proportional scheduler
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Statistics

For each process, measure:

1.  Expected median and 95percentile thinktime

2.  Expected positioning time

Median  95percentile
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Thinktime

last next

Benefit =

best.positioning_time  — next.positioning_time

Cost = next.median_thinktime

Waiting_duration =

(Benefit > Cost) ?  next.95percentile_thinktime : 0

Cost-benefit analysis
for seek optimizing scheduler

best := best available request chosen by scheduler

next := expected forthcoming request from 

process whose request was last serviced

Proportional scheduler

Costs and benefits are different.

e.g., proportional scheduler:

Wait for process whose request was last serviced,

1. if it has received less than its allocation, and

2. if it has thinktime below a threshold (e.g., 3ms)

Waiting_duration = next.95percentile_thinktime

Experiments

• FreeBSD-4.3  patch + kernel module

(1500 lines of C code)

• 7200 rpm IDE disk (IBM Deskstar)

• Also in the paper:

15000 rpm SCSI disk (Seagate Cheetah)

Microbenchmark
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Real workloads

What’s the impact on real applications 
and benchmarks?

Andrew benchmark

Apache web server
(large working set)

Database benchmark

• Disk-intensive

• Prefetching enabled
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Andrew filesystem benchmark

Overall 8% performance improvement
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• CS.Berkeley trace

• Large working set

• 48 web clients
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Database benchmark

•MySQL DB

•Two clients

•One or two 
databases  
on same disk

GnuLD
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Backup

Intelligent adversary
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Conclusion

Anticipatory scheduling:

• overcomes deceptive idleness

• achieves significant performance 
improvement on real applications

• achieves desired proportions

• and is easy to implement!

Anticipatory Disk Scheduling

Sitaram Iyer Peter Druschel

http://www.cs.rice.edu/~ssiyer/r/antsched/


