I/O Management

Learning Outcomes

+ A high-level understanding of the
properties of a variety of 1/0O devices.

» There exists a large variety of I/O devices:

— Many of them with different properties

— They seem to require different interfaces to
manipulate and manage them
» We don’t want a new interface for every device
+ Diverse, but similar interfaces leads to code
duplication

+ Challenge:
— Uniform and efficient approach to 1/0

THE UNIVERSITY OF 3
NEW SOUTH WALES

Intro * An understanding of methods of
interacting with I/O devices.

Chapter 5 * An appreciation of the trend towards
offloading more 1/0 handling to devices
themselves.

B s 1 B s ?
I/O Devices

Categories of I/O Devices (by usage)

* Human interface

— Used to communicate with the user

— Printers, Video Display, Keyboard, Mouse
» Machine interface

— Used to communicate with electronic equipment

— Disk and tape drives, Sensors, Controllers, Actuators
» Communication

— Used to communicate with remote devices

— Ethernet, Modems, Wireless

THE UNIVERSITY OF 4
NEW SOUTH WALES

B

I/O Device Handling

» Data rate

— May be differences of several orders of
magnitude between the data transfer rates

— Example: Assume 1000 cycles/byte 1/O
+ Keyboard needs 10 KHz processor to keep up
+ Gigabit Ethernet needs 100 GHz processor

THE UNIVERSITY OF 5
EW SOUTH WALES

Sample Data Rates

[) s n |

USB 3.0 625 MBJs (5 Gbls)
Thunderbolt 2.5GB/sec (20 Gbis)
PCle V3.0 x16 16GBIs

THE UNIVERSITY OF 6
NEW SOUTH WALES

I/O Device Handling Considerations

» Complexity of control
» Unit of transfer

— Data may be transferred as a stream of bytes for a
terminal or in larger blocks for a disk

» Data representation
— Encoding schemes
 Error conditions

— Devices respond to errors differently
« 1p0: printer on fire!

— Expected error rate also differs

THE UNIVERSITY OF
NEW SOUTH WALES

I/O Device Handling Considerations
* Layering
— Need to be both general and specific, e.g.

— Devices that are the same, but aren’t the
same

+ Hard-disk, USB disk, RAM disk
— Interaction of layers

+ Swap partition and data on same disk
» Two mice

— Priority
» Keyboard, disk, network

THE UNIVERSITY OF 8
NEW SOUTH WALES

Accessing I/0O Controllers

Two address One address space Two address spaces
OXFFFF.. L Memory
/0 ports
0 1 1

@ (b) ()

a) Separate /0 and memory space

— |/O controller registers appear as I/O ports

— Accessed with special I/O instructions
b) Memory-mapped I/0

— Controller registers appear as memory

— Use normal load/store instructions to access
c) Hybrid

— x86 has both ports and memory mapped I/O

THE UNIVERSITY OF 9
NEW SOUTH WALES

Bus Architectures

CPU reads and writes of memory
go over this high-bandwidth bus

CPU Memory lle]
| —— | —) l

cPU Memory 110

‘ This memory port is
to allow I/O devices
access to memory

@ (b)
(a) A single-bus architecture

_@ (b) A dual-bus memaory architecture

All addresses (memory B
and I/0) go here us

THE UNIVERSITY OF
NEW SOUTH WALES

Intel IXP420

Ethernet

NPE A
Ethernet MAC

Ethernet

NPE B
Ethernet MAC

2KB Mini-Data Cache.

THE UNIVERSITY OF
NEW SOUTH WALES

Interrupts
Interrupt 1. Device is finished
CPY 3. CPU acks controller
interrupt Disk
B Keyboard
—
—

loc \
2. Controller = i
1N lssugs , Printer
| | interrupt |

» Devices connected to an Interrupt Controller via
lines on an 1/O bus (e.g. PCI)

* Interrupt Controller signals interrupt to CPU and
is eventually acknowledged.

» Exact details are architecture specific.

THE UNIVERSITY OF 12
NEW SOUTH WALES

E

I/O Interaction

THE UNIVERSITY OF 13
NEW SOUTH WALES

Issue Read
command to PU — 1O
10 module

Programmed I/O

Read status
of VO II/D —CPU

* Also called polling, or busy
waiting

» 1/0O module (controller) performs
the action, not the processor

» Sets appropriate bits in the I/O
status register

» No interrupts occur

» Processor checks status until
operation is complete
— Wastes CPU cycles

module

Error
condition

Read word
from IO
Module

IIIDHEPU

Write word
into memory

ICPU — memor]

THE UNIVERSITY OF b
NEW SOUTH WALES Next instruction
Q) LOQ

I

Interrupt-Driven 1/O
Issue Read PU — 1O
» Processor is interrupted when 1/0
Read status.
module (controller) ready to arvo o
exchange data
» Processor is free to do other work
» No needless waiting T
. from LO
» Consumes a lot of processor time Modue

because every word read or . '
written passes through the oy :

processor

=== Interrupt

Error
condition

1O — CPU

THE UNIVERSITY OF
NEW SOUTH WALES

Next instruction

() Interrupt-driven VO

Direct Memory Access

» Transfers data directly between Memory and Device
» CPU not needed for copying

DMA .
Controller in CRU Memory Devict
Device | | !—I
Separate ‘
DMA CpPU Memory Device
Controller | n |

THE UNIVERSITY OF 16
NEW SOUTH WALES

E

Direct Memory Access

« Transfers a block of data

directly to or from memory | st oo omenn
- Aninterruptis sent when el

the task is complete Readstaus . - et
« The processor is only R oA~ R

involved at the beginning
and end of the transfer

Next instruction

(c) Direct memory access

THE UNIVERSITY OF 17
NEW SOUTH WALES

DMA Considerations

v Reduces number of interrupts
— Less (expensive) context switches or kernel entry-exits
% Requires contiguous regions (buffers)
— Copying
— Some hardware supports “Scatter-gather”
» Synchronous/Asynchronous
» Shared bus must be arbitrated (hardware)
— CPU cache reduces (but not eliminates) CPU need for bus

CPU

| It It

Memory Device

THE UNIVERSITY OF 18
NEW SOUTH WALES

The Process to Perform DMA
Transfer

1. device driver is told to
transfer disk data to
buffer at address X

. DMA controller transfers 2. device driver tells disk
X,

bytes to buffer controller to transfer C
increasing memory bytes from disk to buffer
address and decreasing at address X

. when C = 0, DMA DMA/bus/interrupt [— x
interrupts CPU to signal controller CPU memory bus memory | buffer

transfer completion

CPU

I T 1 PCl bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA

I I controller
THE UNIVERSITY OF 19
NEW SOUTH WALES

IDE disk controller

Device Evolution - Complexity
and Performance

THE UNIVERSITY OF 20
NEW SOUTH WALES

Evolution of the I/O Function

 Processor directly controls a peripheral
device

— Example: CPU controls a flip-flop to
implement a serial line

1'=5V
0 =0V

THE UNIVERSITY OF
NEW SOUTH WALES

Evolution of the I/O Function

« Controller or /O module is added
— Processor uses programmed I/O without interrupts
— Processor does not need to handle details of external devices
— Example: A Universal Asynchronous Receiver Transmitter
« CPU simply reads and writes bytes to I/O controller
« /O controller responsible for managing the signaling

Serial
Line
Bus

THE UNIVERSITY OF 22
NEW SOUTH WALES

Evolution of the 1/0O Function

+ Controller or I/0O module with interrupts
— Processor does not spend time waiting for an
I/O operation to be performed

Interrupt
Line

THE UNIVERSITY OF 23
NEW SOUTH WALES

Evolution of the 1/0O Function

* Direct Memory Access
— Blocks of data are moved into memory
without involving the processor
— Processor involved at beginning and end only

Interrupt
Line

THE UNIVERSITY OF 24
NEW SOUTH WALES

Evolution of the I/O Function

+ 1/0 module has a separate processor

— Example: SCSI controller

+ Controller CPU executes SCSI program code out
of main memory

Interrupt
Line CPU
SCSlI
Controller

SCSI
Bus Cable

THE UNIVERSITY OF 25
NEW SOUTH WALES

Evolution of the I/O Function

* 1/0 processor
— 1/0 module has its own local memory, internal bus, etc.
— Its a computer in its own right
— Example: Myrinet 10 gigabit NIC

Interrupt
Line
Myrinet
Controller

InfiniBand Roadmap

1000 =
4x Link Bandwidth -
FDR EDR HDR
56 Gb/s 100 Gb/s 200 Gbis

100

Link Bandwidth per direction, Gb/s

g INFINIBAND"
TRADE ASSOCIATION
10

T T T T T T T T T
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

©2014 nfiniBand® Trade Association

THE UNIVERSITY OF 26
NEW SOUTH WALES

General Trend

* More specialised hardware

+ Offloading more functionality into
hardware
— Reduced load on CPU

* Improved performance

THE UNIVERSITY OF 28
NEW SOUTH WALES

