I/O Management Intro

Chapter 5

Learning Outcomes

- A high-level understanding of the properties of a variety of I/O devices.
- An understanding of methods of interacting with I/O devices.
- An appreciation of the trend towards offloading more I/O handling to devices themselves.

2

I/O Devices

- There exists a large variety of I/O devices:
 - Many of them with different properties
 - They seem to require different interfaces to manipulate and manage them
 - We don't want a new interface for every device
 - Diverse, but similar interfaces leads to code duplication
- · Challenge:
 - Uniform and efficient approach to I/O

Categories of I/O Devices (by usage)

- · Human interface
 - Used to communicate with the user
 - Printers, Video Display, Keyboard, Mouse
- · Machine interface
 - Used to communicate with electronic equipment
 - Disk and tape drives, Sensors, Controllers, Actuators
- · Communication
 - Used to communicate with remote devices
 - Ethernet, Modems, Wireless

4

I/O Device Handling

- · Data rate
 - May be differences of several orders of magnitude between the data transfer rates
 - Example: Assume 1000 cycles/byte I/O
 - Keyboard needs 10 KHz processor to keep up
 - Gigabit Ethernet needs 100 GHz processor.....

5

Sample Data Rates

Literapa	Clarge ratio
Keybesire	10 ay/ce/soc
Mouse	100 bytes/edc
56K macem	7 K3/sec
Yolophono channo	8 K3/600
Goal SON free	18 K:3/sec
asset printer	100 K:3/sep
Sugme!	400 K3/sec
Classifo Etnemet	1.25 MG/spc
USA (Universal Serial Aus)	1,5 M-Yeog
Digital carreo po:	# Mill/soc
DF mak	5 M3/sac
40x CD HOV	8 Milysac
Fast Ethernet	12.5 M.3/soc
SA ous	16.7 N 3/sec
FIDE (ATA-2) disk	16,7 M3/sec
FireWifre (IEEE 1394)	50 MB/suc
XGA Vioritor	60 VH/sec
SONE COC12 network	78 VII/800
SCSI Utra 2 disk	80 ME/sec
Gigsbit Lihamat	125 VB/sec
Littorn tape	320 MuVsac
PCI bus	528 MB/680
Sun Gisspiene XB badispiene	20 Off/sec

JSB 3.0 625 MB/s (5 Gb/s) Thunderbolt 2.5GB/sec (20 Gb/s) PCle v3.0 x16 16GB/s

THE UNIVERSITY OF NEW SOUTH WALES

6

I/O Device Handling Considerations • Layering - Need to be both general and specific, e.g. - Devices that are the same, but aren't the same • Hard-disk, USB disk, RAM disk - Interaction of layers • Swap partition and data on same disk • Two mice - Priority • Keyboard, disk, network

Evolution of the I/O Function • Processor directly controls a peripheral device - Example: CPU controls a flip-flop to implement a serial line '1' = 5V '0' = 0V Bus THEUNNURSSITY OF ENDY SOCITITI WALES

General Trend • More specialised hardware • Offloading more functionality into hardware – Reduced load on CPU • Improved performance