
1

File Management
Tanenbaum, Chapter 4

COMP3231

Operating Systems

Kevin Elphinstone

Outline

•Files and directories from the programmer
(and user) perspective

•Files and directories internals – the
operating system perspective

2

3

A brief history of file systems
Early batch processing systems

–No OS

–I/O from/to punch cards

–Tapes and drums for external storage, but no FS

–Rudimentary library support for reading/writing tapes and
drums

IBM 709 [1958]

4

A brief history of file systems

•The first file systems were single-
level (everything in one directory)

•Files were stored in contiguous
chunks

–Maximal file size must be known in
advance

•Now you can edit a program and
save it in a named file on the tape!

PDP-8 with DECTape [1965]

5

A brief history of file systems

•Time-sharing OSs
–Required full-fledged file systems

•MULTICS
–Multilevel directory structure (keep files that belong to
different users separately)

–Access control lists

–Symbolic links

Honeywell 6180 running
MULTICS [1976]

6

A brief history of file systems

•UNIX

–Based on ideas from
MULTICS

–Simpler access control
model

–Everything is a file!

PDP-7

7

Summary of the FS abstraction

User’s view Under the hood

Uniform namespace Heterogeneous collection of storage

devices

Hierarchical structure Flat address space

Arbitrarily-sized files Fixed-size blocks

Symbolic file names Numeric block addresses

Contiguous address space inside a file Fragmentation

Access control No access control

Tools for

• Formatting

• Defragmentation

• Backup

• Consistency checking

8

OS storage stack

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

Syscall interface:
creat
open
read
write
...

Operating

System

9

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Hard disk platters:
tracks
sectors

Application

OS storage stack

10

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Disk controller:

Hides disk geometry,
bad sectors

Exposes linear
sequence of blocks

0 N

Application

OS storage stack

11

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Device driver:

Hides device-specific
protocol

Exposes block-device
Interface (linear
sequence of blocks)

0 N

Application

OS storage stack

12

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File system:

Hides physical location
of data on the disk

Exposes: directory
hierarchy, symbolic file
names, random-access
files, protection

Application

OS storage stack

13

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Optimisations:

Keep recently accessed
disk blocks in memory

Schedule disk accesses
from multiple processes
for performance and
fairness

Application

OS storage stack

14

Disk scheduler

FS

VFS

OF table

FD table

Device driver

Virtual FS:

Unified interface to
multiple FSs

Application

Disk scheduler

FS2

Device driver

Buffer cache

OS storage stack

15

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

File desctriptor and
Open file tables:

Keep track of files
opened by user-level
processes

Implement semantics
of FS syscalls

Application

OS storage stack

16

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Device driver

Application

OS storage stack

File Names

17

• File system must provide a convenient naming
scheme
• Textual Names

• May have restrictions
• Only certain characters

• E.g. no ‘/’ characters

• Limited length

• Only certain format
• E.g DOS, 8 + 3

• Case (in)sensitive

• Names may obey conventions (.c files or C files)
• Interpreted by tools (UNIX)

• Interpreted by operating system (Windows)

18

File Structure Abstractions

•Three kinds of files
–byte sequence

–record sequence

–key-based, tree structured
•e.g. IBM’s indexed sequential access method (ISAM)

File Structure Abstractions

Stream of Bytes

• OS considers a file to be
unstructured

• Simplifies file
management for the OS

• Applications can impose
their own structure

• Used by UNIX, Windows,
most modern OSes

Records

• Collection of bytes treated
as a unit

• Example: employee
record

• Operations at the level of
records (read_rec,
write_rec)

• File is a collection of
similar records

• OS can optimise
operations on records

20

File Structure Abstractions

•Tree of Records

–Records of variable length

–Each has an associated key

–Record retrieval based on key

–Used on some data processing systems (mainframes)

•Mostly incorporated into modern databases

21

File Types

•Regular files

•Directories

•Device Files
–May be divided into

•Character Devices – stream of bytes

•Block Devices

•Some systems distinguish between regular file types
–ASCII text files, binary files

22

File Access Types
•Sequential access

–read all bytes/records from the beginning

–cannot jump around, could rewind or back up

–convenient when medium was magnetic tape

•Random access

–bytes/records read in any order

–essential for data base systems

–read can be …

•move file pointer (seek), then read or
–lseek(location,…);read(…)

•each read specifies the file pointer
–read(location,…)

23

File Attributes

24

Typical File Operations

● Create

● Delete

● Open

● Close

● Read

● Write

●Append

●Seek

●Get attributes

●Set Attributes

●Rename

25

An Example Program Using File System Calls
(1/2)

26

An Example Program Using File System Calls
(2/2)

27

File Organisation and Access
Programmer’s Perspective

•Given an operating system supporting
unstructured files that are a stream-of-bytes,

how can one organise the contents of the files?

28

File Organisation and Access
Programmer’s Perspective

•Possible access patterns:

–Read the whole file

–Read individual blocks or records from a file

–Read blocks or records preceding or following the current one

–Retrieve a set of records

–Write a whole file sequentially

–Insert/delete/update records in a file

–Update blocks in a file

29

Criteria for File Organization

Things to consider when designing file layout
•Rapid access

–Needed when accessing a single record
–Not needed for batch mode

•read from start to finish

•Ease of update
–File on CD-ROM will not be updated, so this is not a concern

•Economy of storage
–Should be minimum redundancy in the data

–Redundancy can be used to speed access such as an index

30

Classic File Organisations

•There are many ways to organise a file’s
contents, here are just a few basic methods

–Unstructured Stream (Pile)

–Sequential Records

–Indexed Sequential Records

31

Unstructured Stream

•Data are collected in the
order they arrive

•Purpose is to accumulate a
mass of data and save it

•Records may have different
fields

•No structure

•Record access is by
exhaustive search

32

Unstructured Stream Performance

•Update

–Same size record - okay

–Variable size - poor

•Retrieval

–Single record - poor

–Exhaustive - okay

33

The Sequential File

•Fixed format used for
records

•Records are the same
length

•Field names and lengths
are attributes of the file

•One field is the key field

–Uniquely identifies the record

–Records are stored in key
sequence

34

The Sequential File

•Update

–Same size record - good

•Retrieval

–Single record - poor

–Exhaustive - okay

35

Indexed Sequential File

•Index provides a lookup
capability to quickly reach the
vicinity of the desired record

–Contains key field and a pointer to
(location in) the main file

–Index is searched to find highest key
value that is equal or less than the
desired key value

–Search continues in the main file at
the location indicated by the pointer

Index

Key

File Ptr

Main
File

36

Indexed Sequential File

•Update

–Same size record - good

–Variable size - No

•Retrieval

–Single record - good

–Exhaustive - okay

Index

Key

File Ptr

Main
File

37

File Directories

•Provide mapping between file names and
the files themselves

•Contain information about files

–Attributes

–Location

–Ownership

•Directory itself is a file owned by the
operating system

38

39

Hierarchical, or Tree-Structured
Directory

•Files can be located by following a path from the
root, or master, directory down various branches

–This is the absolute pathname for the file

•Can have several files with the same file name as
long as they have unique path names

40

Current Working Directory

•Always specifying the absolute pathname
for a file is tedious!

•Introduce the idea of a working directory

–Files are referenced relative to the working
directory

•Example: cwd = /home/kevine

.profile = /home/kevine/.profile

41

Relative and Absolute
Pathnames

•Absolute pathname
–A path specified from the root of the file system to the file

•A Relative pathname
–A pathname specified from the cwd

•Note: ‘.’ (dot) and ‘..’ (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine

../../etc/passwd

/etc/passwd

../kevine/../.././etc/passwd

Are all the same file

42

Typical Directory Operations

●Create

●Delete

●Opendir

●Closedir

● Readdir

● Rename

● Link

● Unlink

43

Nice properties of UNIX naming

•Simple, regular format

–Names referring to different servers, objects, etc., have
the same syntax.

•Regular tools can be used where specialised tools would be
otherwise be needed.

•Location independent

–Objects can be distributed or migrated, and continue
with the same names.

Where is /home/kevine/.profile?

You only need to know the name!

44

An example of a bad naming
convention

•From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BIN]CAT_V.EXE;13

45

File Sharing

•In multiuser system, allow files to be shared
among users

•Two issues

–Access rights

–Management of simultaneous access

46

Access Rights

•None

–User may not know of the existence of the file

–User is not allowed to read the directory that
includes the file

•Knowledge

–User can only determine that the file exists and
who its owner is

47

Access Rights

•Execution

–The user can load and execute a program but
cannot copy it

•Reading

–The user can read the file for any purpose,
including copying and execution

•Appending

–The user can add data to the file but cannot
modify or delete any of the file’s contents

48

Access Rights

•Updating
–The user can modify, deleted, and add to the
file’s data. This includes creating the file,
rewriting it, and removing all or part of the data

•Changing protection
–User can change access rights granted to
other users

•Deletion
–User can delete the file

49

Access Rights

•Owners

–Has all rights previously listed

–May grant rights to others using the following
classes of users

•Specific user

•User groups

•All for public files

50

Case Study:
UNIX Access Permissions

•First letter: file type

d for directories

- for regular files

•Three user categories

user, group, and other

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..

drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup

-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

51

UNIX Access Permissions

•Three access rights per category

read, write, and execute

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..

drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup

-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

drwxrwxrwx
user group

other

52

UNIX Access Permissions

•Execute permission for directory?

–Permission to access files in the directory

•To list a directory requires read permissions

•What about drwxr-x—x?

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..

drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup

-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

53

UNIX Access Permissions

•Shortcoming
–The three user categories are rather coarse

•Problematic example
–Joe owns file foo.bar

–Joe wishes to keep his file private
•Inaccessible to the general public

–Joe wishes to give Bill read and write access

–Joe wishes to give Peter read-only access

–How????????

54

Simultaneous Access

•Most OSes provide mechanisms for users to manage
concurrent access to files

–Example: flock(), lockf(), system calls

•Typically

–User may lock entire file when it is to be updated

–User may lock the individual records during the update

•Mutual exclusion and deadlock are issues for shared
access

