Processes and Threads

S
CEL THE UNIVERSITY OF
i NEW SOUTH WALES

(&

Learning Outcomes

* An understanding of fundamental concepts of
processes and threads

B
g THE UNIVERSITY OF
NEW SOUTH WALES

Major Requirements of an
Operating System

* Interleave the execution of several
processes to maximize processor
utilization while providing reasonable
response time

 Allocate resources to processes

» Support interprocess communication and
user creation of processes

ER
B! THE UNIVERSITY OF
NEW SOUTH WALES

Processes and Threads

* Processes:
— Also called a task or job
— Execution of an individual program
— “Owner” of resources allocated for program execution
— Encompasses one or more threads

 Threads:

— Unit of execution

— Can be traced
« list the sequence of instructions that execute

— Belongs to a process

] THE UNIVERSITY OF 4
NEW SOUTH WALES

Address W ain Memory Program Count
0

100 8000 3
Dispatcher
S
Execution snapshot Process A
of three single-
B0
threaded processes g
(NO V|rtua| Process B
Memory) -
Process C

Figure 3.1 Snapshot of Example Execution (Figure 3
at Instruction Cycle 13

Logical Execution Trace

5000 8000 12000
5001 a001 12001
5002 a002 12002
5003 a003 12003
5004 12004
S005 12005
5006 12006
5007 12007
S008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A (h) Trace of Process B {c) Trace of Process C

2000 = Starting address of program of Process A
000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 Traces of Processes of Figure 3.1

Combined Traces

(Actual CPU
Instructions)

What are the
shaded sections?

1 5000 27 12004
2 s001 2% 12005
3 5002
4 5003 29 100
5 5004 30 101
i 5005 il 102
Time out 32 103
7 100 33 104
g 101 34 105
9 102 35 5006
10 103 36 5007
11 104 37 5008
12 105 3% 5009
13 2000 39 A010
14 8001 40 5011
15 8002
16 8003 41 100
.................. /0 tequest 42 101
17 100 43 102
12 101 44 103
19 102 45 104
20 103 4 105
21 104 47 12006
22105 4z 12007
2% 12000 49 12008
24 12001 500 12009
25 12002 51 12010
26 12003 520 12011

100 = Stavtmg address of dispateher program

shaded areas mdicate exeoution of dispatcher process,
first and third cobitns coumt mstraction cyeles;

second and fourth cohimns shoar address of instrictionbeing exemated

Time out

Time out

Titme out

Figure 33 Combhined Trace of Processes of Figure 3.1

Summary: The Process Model

One program counter
N Four program counters

A Process
E switch
B

C A# B Y cl DY

Process

> Ww O O
I
I

J Y

D Time —=

(a) (b) (c)

« Multiprogramming of four programs

« Conceptual model of 4 independent, sequential
processes (with a single thread each)

%; Only one program active at any instant

s

one process
one thread

one process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

s = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

Process and thread models of

selected OSes

Single process, single thread
— MSDOS

Single process, multiple threads
— OS/161 as distributed

Multiple processes, single thread
— Traditional unix

Multiple processes, multiple threads
— Modern Unix (Linux, Solaris), Windows 2000

Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
__threads (for historical reasons)

- é::L! THE UNIVERSITY OF
NEW SOUTH WALES

10

Process Creation

Principal events that cause process creation

1. System initialization
« Foreground processes (interactive programs)

« Background processes
Email server, web server, print server, etc.
Called a daemon (unix) or service (Windows)

2. [Execution of a process creation system call by a
running pProcess
* New login shell for an incoming telnet/ssh connection

3. User request to create a new process
4. Initiation of a batch job

Note: Technically, all these cases use the same
system mechanism to create new processes.

RS THE UNIVERSITY OF R

Bt LN
it NEW SOUTH WALES

fci

Process Termination

Conditions which terminate processes

1.

2.
3.
4.

Normal exit (voluntary)

Error exit (voluntary)

Fatal error (involuntary)

Killed by another process (involuntary)

- i»ﬁ’sj, THE UNIVERSITY OF
NEW SOUTH WALES

12

Process/Thread States

1. Process blocks for input
2. Scheduler picks another process

3. Scheduler picks this process
4. Input becomes available

» Possible process/thread states
— running
— blocked
— ready
« Transitions between states shown

- THE UNIVERSITY OF
NEW SOUTH WALES

13

Some Transition Causing

Events

Running >Ready
— Voluntary Yield ()
— End of timeslice
Running >Blocked
— Waiting for input
* File, network,
— Waiting for a timer (alarm signal)
— Waiting for a resource to become available

B
Rl THE UNIVERSITY OF
NEW SOUTH WALES

14

Dispatcher

« Sometimes also called the scheduler
— The literature is also a little inconsistent on
this point
» Has to choose a Ready process to run
— How??
— It is inefficient to search through all
processes

Rl THE UNIVERSITY OF

}::; NEW SOUTH WALES

The Ready Queue

Quene
Enter Dispatch KXl
l -
Pause
(b) Queulng dlagram

- - THE UNIVERSITY OF 16

What about blocked processes?

 When an unblocking event occurs, we also
wish to avoid scanning all processes to
select one to make Ready

==
Rl THE UNIVERSITY OF 17
NEW SOUTH WALES

B s
W[
od

Using Two Queues

Ready Queue
Admit Dispatch
‘ -
Timeout
Elocked Queue
Event Event Walt
Oocurs

(a) Single blocked queue

Release

18

Ready (Queue — Release

e LTt

Timeout

Event 1 Queune

Event 1 . Event 1 Wall
Occurs

Event 2 (Quene

Event 2 e Event 2 Wallt
Occurs

¥
| 4
¥

Event n Queune

Event n Event n Walt
-—
occurs

() Multiple blocked queunes

2

Implementation of Processes

« A processes’ information is stored in
a process control block (PCB)

 The PCBs form a process table

— Sometimes the kernel stack for each
process is in the PCB

— Sometimes some process info is on the
kernel stack
« E.g. registers in the trapframe in OS/161

— Reality is much more complex (hashing,
chaining, allocation bitmaps,...)

] THE UNIVERSITY OF

NEW SOUTH WALES

P7

P6

P5

P4

P3

P2

P1

PO

20

Implementation of Processes

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Example fields of a process table entry

21

Threads
The Thread Model

Process 1 Process 1 Process 1 Process
\\ | | i
User <
space
Thread Thread
Kernel K |
space Kernel erne

(a) (b)

(a) Three processes each with one thread

The Thread Model

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

* [tems shared by all threads in a process

* |tems private to each thread

23

|33
8

Threads Analogy

24

Single-Threaded Restaurant

Customer Take Order
Artives Fries Cook

_ Blocking
operations
delay all
activities

Assemble
Order Burger Burger Cooks
Finished

1 THE UNIVERSITY OF 25
NEW SOUTH WALES

|
349

Multithreaded Restaurant

Fries Cook

Wait for
Customer

Take Order

| Assemble

Order

Note: Ignoring synchronisation issues for now Burger Cooks

L] THE UNIVERSITY OF
NEW SOUTH WALES

26

Multithreaded Restaurant
with more worker threads

Customer
Arrives

Wait for
Customer

Take Order

| Assemble

Order

=
& | THE UNIVERSITY OF 27
NEW SOUTH WALES

Finite-State Machine Model

(Event-based model)

Input

Events Non-

Blocking

actions
Take Order
Assemble
Order

External

| activities
. Wait for
Fries Cook Burger Cooks Customer

28

B st
[
it

The Thread Model

_—~ Process

Thread 3's stack

Thead2
Thread 1 Thfead 3
0=
e H‘
-
Each thread has its own stack

29

Thread Model

» Local variables are per thread
— Allocated on the stack

* Global variables are shared between all threads
— Allocated in data section
— Concurrency control is an issue

« Dynamically allocated memory (malloc) can be
global or local
— Program defined (the pointer can be global or local)

FL| THE UNIVERSITY OF 30

Observation: Computation State

Thread Model Finite State (Event) Model

« State implicitly stored on ¢ State explicitly managed
the stack. by program

B THE UNIVERSITY OF 31

Thread Usage

Fonr scare and seven
years ago, ow fathois
brought farth upon this
continent a new nation:
concetved in liberty,
and dedicated o the
propasition that all
men are created equal.

Dow we are engaged
in o great civil war
testing whether that

nation, or any nation
o conceived and =2
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come
dedicatz a portion of
that field as a final
resting place for thoss
who here gave theic

lives that this nation
might live. U s
ahogether fitting and
proper that we should
do this,

But, in a larger semsz,
we cannot dedicats, we
camnot canszcrate we
canmot hallow this
gound. The brmve
men, living and dead,

who stuggled here
have consscrted it, far
above our poor pawer
to add or detract. The
world will little nate,
mr long rtemember,
what we say here, tmt
it can mever forget
whatthey did hers.
1tis for us the living,
mther, 1o be dedicated

here 1o the unfinished
work which they who
fought here have this
far s0 nobly advanced.
It is mther for 1 1o be
here dedicated to the
great task remaining
beforr s, that from
these honored dead we
take increased devotion
to that cause for which

they gave the last full
measure of devotion,
that we here highly
resalve that thess dead
shall not have died in
vain that this nation,
‘under God, shall have
a new birth of fieedom
and that governme of
the people by the
people, for the peaple

L

~

Kernel

Keyboard

D

A word processor with three threads

THE UNIVERSITY OF
NEW SOUTH WALES

isk

32

Thread Usage

Web server process

Dispatcher thread
- ,..27) l Worker thread
Web page cache
Kernel
Network
connection

User
> space

Kernel
space

A multithreaded Web server

33

Thread Usage

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);
}
(a) (b)

* Rough outline of code for previous slide
(a) Dispatcher thread

(b) Worker thread — can overlap disk I/O with
execution of other threads

ZL] THE UNIVERSITY OF 34
Ed NEW SOUTH WALES

Thread Usage

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

L THE UNIVERSITY OF 3

Summarising “Why Threads?”

Simpler to program than a state machine

Less resources are associated with them than a
complete process

— Cheaper to create and destroy

— Shares resources (especially memory) between them
Performance: Threads waiting for 1/O can be overlapped
with computing threads

— Note if all threads are compute bound, then there is no
performance improvement (on a uniprocessor)

Threads can take advantage of the parallelism available
on machines with more than one CPU (multiprocessor)

36

