Scheduling Bits & Pieces

S
CEL THE UNIVERSITY OF
i NEW SOUTH WALES

(&

Windows Scheduling

3 Win32 process class priorities
Above Below

Real-time | High | Normal | Normal | Normal | Idle

Time critical 31 15 15 15 15 15

Highest 26 15 12 10 8 6

Win32 Above normal 25 14 11 9 7 5
thread Normal 24 13 10 8 6 4
priorities | Below normal 23 12 9 7 5 3
Lowest 22 11 8 6 4 2

. Idle 16 1 1 1 1 1

Figure 11-27. Mapping of Win32 priorities to Windows priorities.
2

Windows Scheduling

* Priority Boost when unblocking

— Actual boost dependent on resource
 Disk (1), serial (2), keyboard (6), soundcard (8).....
* Interactive, window event, semaphore (1 or 2)

— Boost decrements if quantum expires
» Anti-starvation hack

— If a ready process does not run for long time,
it gets 2 quanta at priority 15

Priority Inheritance

N,
MONJL\
LO/

=3
LB THE UNIVERSITY OF
@8l NEW SOUTH WALES

Batch Algorithms

— Maximise throughput
« Throughput is measured in jobs per hour (or similar)

— Minimise turn-around time
» Turn-around time (T,
— difference between time of completion and time of submission
— Or waiting time (7,) + execution time (T,)
— Maximise CPU utilisation
« Keep the CPU busy
« Not as good a metric as overall throughput

L] THE UNIVERSITY OF 5
NEW SOUTH WALES

First-Come First-Served (FCFS)

 Algorithm

— Each job is placed in single queue, the first
job in the queue is selected, and allowed to
run as long as it wants.

— If the job blocks, the next job in the queue is
selected to run

— When a blocked jobs becomes ready, it is
placed at the end of the queue

==
Rl THE UNIVERSITY OF °
NEW SOUTH WALES

Example

« 5Jobs

] — Job 1 arrives slightly
1 before job 2, etc...

— All are immediately
13 runnable

— Execution times
14 indicated by scale on

X-axis

J5

0 2 4 6 8 10 12 14 16 18 20

L] THE UNIVERSITY OF !
&% S| NEW SOUTH WALES

FCFS Schedule

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

SEL] THE UNIVERSITY OF 8
NEW SOUTH WALES

FCFS
* Pros

— Simple and easy to implement

« Cons
— 1/O-bound jobs wait for CPU-bound jobs

—Favours CPU-bound processes

« Example:

— Assume 1 CPU-bound process that computes for 1 second and
blocks on a disk request. It arrives first.

— Assume an I/O bound process that simply issues a 1000
blocking disk requests (very little CPU time)

— FCFS, the I/0O bound process can only issue a disk request per
second

» the /0O bound process take 1000 seconds to finish

— Another scheme, that preempts the CPU-bound process when
|/O-bound process are ready, could allow |I/O-bound process to

— finish in 1000* average disk access time.

CEL THE UNIVERSITY OF ?

}':\,ﬁ NEW SOUTH WALES

Shortest Job First

* |[f we know (or can estimate) the execution
time a priori, we choose the shortest job
first.

* Another non-preemptive policy

==
Rl THE UNIVERSITY OF 10
NEW SOUTH WALES

Our Previous Example

« 5Jobs

] — Job 1 arrives slightly
1 before job 2, etc...

— All are immediately
13 runnable

— Execution times
14 indicated by scale on

X-axis

J5

0 2 4 6 8 10 12 14 16 18 20

L THE UNIVERSITY OF 11

Shortest Job First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

201 THE UNIVERSITY OF 12
NEW SOUTH WALES

Sborrtest Job First

0 a +b
« Con a4 +0 +

— May starvedong jogs + ¢+ c 4+ef
— Needs to predict job length

* Pro

— Minimises average turnaround time (if, and only if, all
jobs are available at the beginning)

— Example: Assume for processes with execution times
ofa, b, c, d.
« afinishes at time g, bfinishesata+ b, cata+ b + ¢, and so
on
» Average turn-around time is (4a + 3b + 2c + d)/4

« Since a contributes most to average turn-around time, it
should be the shortest job.

13

fci

Shortest Remaining Time First

* A preemptive version of shortest job first

 When ever a new jobs arrive, choose the
one with the shortest remaining time first

— New short jobs get good service

-é- THE UNIVERSITY OF 14

NEW SOUTH WALES

Example

. e 5Jobs
— Release and execution
1 times as shown
J3
J4
J5

0 2 4 6 8 10 12 14 16 18 20

L THE UNIVERSITY OF 15

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

ZL] THE UNIVERSITY OF 16
NEW SOUTH WALES

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

ZL] THE UNIVERSITY OF 17
NEW SOUTH WALES

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

ZL] THE UNIVERSITY OF 18
NEW SOUTH WALES

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

ZL] THE UNIVERSITY OF 19
NEW SOUTH WALES

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

ZL] THE UNIVERSITY OF 20
NEW SOUTH WALES

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

ZL] THE UNIVERSITY OF 21
NEW SOUTH WALES

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

ZL] THE UNIVERSITY OF 22
NEW SOUTH WALES

Scheduling in Batch Systems

cPu O
ﬁ-(— CPU scheduler
Arriving
Job Input 00000 N
* queue | ~
O [[opbb ——=> Horaoy < >
N
N—_
Admission Memory Disk
scheduler scheduler
Three level scheduling
g- THE UNIVERSITY OF 53

Three Level Scheduling

» Admission Scheduler
— Also called long-term scheduler

— Determines when jobs are admitted into the
system for processing

— Controls degree of multiprogramming

— More processes = less CPU available per
process

==
Rl THE UNIVERSITY OF 24
NEW SOUTH WALES

Three Level Scheduling

« CPU scheduler

— Also called short-term scheduler

— Invoked when ever a process blocks or is
released, clock interrupts (if preemptive
scheduling), I/O interrupts.

— Usually, this scheduler is what we are
referring to if we talk about a scheduler.

==
B | THE UNIVERSITY OF 25
NEW SOUTH WALES

Three Level Scheduling

* Memory Scheduler
— Also called medium-term scheduler

— Adjusts the degree of multiprogramming via
suspending processes and swapping them
out

BT
LB | THE UNIVERSITY OF 26
NEW SOUTH WALES

Some Issues with Priorities

» Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).

« Adaption is:

— usually ad-hoc,

* hence behaviour not thoroughly understood, and
unpredictable

— Gradual, hence unresponsive
Difficult to guarantee a desired share of the CPU
No way for applications to trade CPU time

S THE UNIVERSITY OF 27

Lottery Scheduling

» Each process is issued with “lottery
tickets” which represent the right to
use/consume a resource

— Example: CPU time

» Access to a resource is via “drawing” a
lottery winner.

— The more tickets a process possesses, the
higher chance the process has of winning.

B
L THE UNIVERSITY OF 28

}::; NEW SOUTH WALES

Lottery Scheduling

A Y

« Advantages e
— Simple to implement @[

— Highly responsive
 can reallocate tickets held for immediate effect
— Tickets can be traded to implement individual
scheduling policy between co-operating
threads
— Starvation free

A process holding a ticket will eventually be
scheduled.

B THE UNIVERSITY OF 29

Example Lottery Scheduling

* Four process running concurrently
— Process A: 15% CPU
— Process B: 25% CPU
— Process C: 5% CPU
— Process D: 55% CPU

 How many tickets should be issued to
each? | o 0

B
Rl THE UNIVERSITY OF
NEW SOUTH WALES

Lottery Scheduling Performance

Observed performance of 5
two processes with P)
varying ratios of tickets Z 10 :
s ;-
2 5] g
S 1 o
1] °
0 —— ' .
0 2 4 6 8 10

Allocated Ratio

Figure 4: Relative Rate Accuracy. For each allocated ratio, the
observed ratio is plotted for each of three 60 second runs. The
gray line indicates the ideal where the two ratios are identical.

B
g THE UNIVERSITY OF 31
NEW SOUTH WALES

30000

20000

10000

Average Iterations (per sec)

0 I) r r L] I)) r L] I I
0 50 100 150 200

Time (sec)

Figure 5: Fairness Over Time. Two tasks executing the Dhry-
stone benchmark with a 2: 1 ticket allocation. Averaged over the
entire run, the two tasks executed 25378 and 12619 iterations/sec.,
for an actual ratio of 2.01 : 1.

=1 THE UNIVERSITY OF
B NEW SOUTH WALES

32

2

Fair-Share Scheduling

So far we have treated processes as individuals

Assume two users
— One user has 1 process
— Second user has 9 processes

The second user gets 90% of the CPU

Some schedulers consider the owner of the process in
determining which process to schedule

— E.g., for the above example we could schedule the first user’s
process 9 times more often than the second user’s processes

Many possibilities exist to determine a fair schedule
— E.g. Appropriate allocation of tickets in lottery scheduler

] THE UNIVERSITY OF 33

NEW SOUTH WALES

