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Windows Scheduling

3 Win32 process class priorities
Above Below

Real-time | High | Normal | Normal | Normal | Idle

Time critical 31 15 15 15 15 15

Highest 26 15 12 10 8 6

Win32 Above normal 25 14 11 9 7 5
thread Normal 24 13 10 8 6 4
priorities | Below normal 23 12 9 7 5 3
Lowest 22 11 8 6 4 2

. Idle 16 1 1 1 1 1

Figure 11-27. Mapping of Win32 priorities to Windows priorities.
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Windows Scheduling

* Priority Boost when unblocking

— Actual boost dependent on resource
 Disk (1), serial (2), keyboard (6), soundcard (8).....
* Interactive, window event, semaphore (1 or 2)

— Boost decrements if quantum expires
» Anti-starvation hack

— If a ready process does not run for long time,
it gets 2 quanta at priority 15
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Batch Algorithms

— Maximise throughput
« Throughput is measured in jobs per hour (or similar)

— Minimise turn-around time
» Turn-around time (T,
— difference between time of completion and time of submission
— Or waiting time (7,) + execution time (T,)
— Maximise CPU utilisation
« Keep the CPU busy
« Not as good a metric as overall throughput
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First-Come First-Served (FCFS)

 Algorithm

— Each job is placed in single queue, the first
job in the queue is selected, and allowed to
run as long as it wants.

— If the job blocks, the next job in the queue is
selected to run

— When a blocked jobs becomes ready, it is
placed at the end of the queue
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Example

« 5Jobs

] — Job 1 arrives slightly
1 before job 2, etc...

— All are immediately
13 runnable

— Execution times
14 indicated by scale on

X-axis
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FCFS Schedule
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FCFS
* Pros

— Simple and easy to implement

« Cons
— 1/O-bound jobs wait for CPU-bound jobs

—Favours CPU-bound processes

« Example:

— Assume 1 CPU-bound process that computes for 1 second and
blocks on a disk request. It arrives first.

— Assume an I/O bound process that simply issues a 1000
blocking disk requests (very little CPU time)

— FCFS, the I/0O bound process can only issue a disk request per
second

» the /0O bound process take 1000 seconds to finish

— Another scheme, that preempts the CPU-bound process when
|/O-bound process are ready, could allow |I/O-bound process to

— finish in 1000* average disk access time.
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Shortest Job First

* |[f we know (or can estimate) the execution
time a priori, we choose the shortest job
first.

* Another non-preemptive policy
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Our Previous Example

« 5Jobs

] — Job 1 arrives slightly
1 before job 2, etc...

— All are immediately
13 runnable

— Execution times
14 indicated by scale on

X-axis
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Shortest Job First
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Sborrtest Job First

0 a +b
« Con a4 +0 +

— May starvedong jogs + ¢+ c 4+ef
— Needs to predict job length

* Pro

— Minimises average turnaround time (if, and only if, all
jobs are available at the beginning)

— Example: Assume for processes with execution times
ofa, b, c, d.
« afinishes at time g, bfinishesata+ b, cata+ b + ¢, and so
on
» Average turn-around time is (4a + 3b + 2c + d)/4

« Since a contributes most to average turn-around time, it
should be the shortest job.
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Shortest Remaining Time First

* A preemptive version of shortest job first

 When ever a new jobs arrive, choose the
one with the shortest remaining time first

— New short jobs get good service
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Example

. e 5Jobs
— Release and execution
1 times as shown
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Shortest Remaining Time First
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Shortest Remaining Time First
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Shortest Remaining Time First
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Shortest Remaining Time First
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Shortest Remaining Time First
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Shortest Remaining Time First
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Shortest Remaining Time First
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Scheduling in Batch Systems
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Admission Memory Disk
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Three level scheduling
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Three Level Scheduling

» Admission Scheduler
— Also called long-term scheduler

— Determines when jobs are admitted into the
system for processing

— Controls degree of multiprogramming

— More processes = less CPU available per
process

==
Rl THE UNIVERSITY OF 24
NEW SOUTH WALES




Three Level Scheduling

« CPU scheduler

— Also called short-term scheduler

— Invoked when ever a process blocks or is
released, clock interrupts (if preemptive
scheduling), I/O interrupts.

— Usually, this scheduler is what we are
referring to if we talk about a scheduler.
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Three Level Scheduling

* Memory Scheduler
— Also called medium-term scheduler

— Adjusts the degree of multiprogramming via
suspending processes and swapping them
out
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Some Issues with Priorities

» Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).

« Adaption is:

— usually ad-hoc,

* hence behaviour not thoroughly understood, and
unpredictable

— Gradual, hence unresponsive
Difficult to guarantee a desired share of the CPU
No way for applications to trade CPU time
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Lottery Scheduling

» Each process is issued with “lottery
tickets” which represent the right to
use/consume a resource

— Example: CPU time

» Access to a resource is via “drawing” a
lottery winner.

— The more tickets a process possesses, the
higher chance the process has of winning.
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Lottery Scheduling

A Y

« Advantages e
— Simple to implement @[

— Highly responsive
 can reallocate tickets held for immediate effect
— Tickets can be traded to implement individual
scheduling policy between co-operating
threads
— Starvation free

A process holding a ticket will eventually be
scheduled.
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Example Lottery Scheduling

* Four process running concurrently
— Process A: 15% CPU
— Process B: 25% CPU
— Process C: 5% CPU
— Process D: 55% CPU

 How many tickets should be issued to
each? | o 0

B
Rl THE UNIVERSITY OF
NEW SOUTH WALES




Lottery Scheduling Performance

Observed performance of 5
two processes with P )
varying ratios of tickets Z 10 :
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Figure 4: Relative Rate Accuracy. For each allocated ratio, the
observed ratio is plotted for each of three 60 second runs. The
gray line indicates the ideal where the two ratios are identical.
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Figure 5: Fairness Over Time. Two tasks executing the Dhry-
stone benchmark with a 2: 1 ticket allocation. Averaged over the
entire run, the two tasks executed 25378 and 12619 iterations/sec.,
for an actual ratio of 2.01 : 1.
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Fair-Share Scheduling

So far we have treated processes as individuals

Assume two users
— One user has 1 process
— Second user has 9 processes

The second user gets 90% of the CPU

Some schedulers consider the owner of the process in
determining which process to schedule

— E.g., for the above example we could schedule the first user’s
process 9 times more often than the second user’s processes

Many possibilities exist to determine a fair schedule
— E.g. Appropriate allocation of tickets in lottery scheduler
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