OS storage stack (recap)

Application

FD table
. OF table
UNIX File Management VES
(continued) =
Buffer cache
Disk scheduler
Device driver

NEW SOUTH WALES

BB THE UNIVERSITY OF 1 m THE UI\IV%RSITY (')I
NEW SOUTH WALES
o

Virtual File System (VFS) Older Systems only had a single
file system

FD table * They had file system specific open, close, read,
OF table write, ... calls.
VS * However, modern systems need to support
FS many file system types
Buffer cache — 1S09660 (CDROM), MSDOS (floppy), ext2fs, tmpfs
Disk scheduler
Device driver

THE UNIVERSITY OF 4
NEW SOUTH WALES
Rl

Supporting Multiple File Virtual File System (VFS)
Systems

* Alternatives FD table

— Change the file system code to understand OF table
different file system types VFS
* Prone to code bloat, complex, non-solution FS | | FS2
— Provide a framework that separates file [Buiiter it
system independent and file system Disk scheduler Disk scheduler
dependent code. Device driver Device driver

* Allows different file systems to be “plugged in”

THE UNIVERSITY OF 5 THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
L Lo



Virtual file system (VFS)

/
— open(“/home/leonidrffile”, ...);

Traversing the directory hierarchy
may require VFS to issue requests
to several underlying file systems

/home/leonidr

THE UNIVERSITY OF 7
NEW SOUTH WALES

The file system independent code
deals with vfs and vnodes

VFS FS
— —— Vnode —— [inode;
File system
File Desarot dependent
E - lle Descriptc N
B v e Open FieTable code

Vfs and Vnode Structures

struct vnode . size

_Generic * uid, gid
(FS-independent) « ctime, atime, mtime
fields © o

fs_data
vnode ops

FS-specific

i fields
ext2fs read
ext2fs write j

* Block group number
* Data block list

FS-specific
implementation of
vnode operations

THE UNIVERSITY OF 1"
NEW SOUTH WALES
=1

Virtual File System (VFS)

* Provides single system call interface for many file
systems
- E.g., UFS, Ext2, XFS, DOS, ISO9660,...
* Transparent handling of network file systems
- E.g., NFS, AFS, CODA
* File-based interface to arbitrary device drivers (/dev)
* File-based interface to kernel data structures (/proc)

* Provides an indirection layer for system calls
— File operation table set up at file open time
— Points to actual handling code for particular type
— Further file operations redirected to those functions

THE UNIVERSITY OF 8
NEW SOUTH WALES
Rl

VFS Interface
* Reference

—  S.R. Kleiman., "Vnodes: An Architecture for Multiple File System Types
in Sun Unix," USENIX Association: Summer Conference Proceedings,
Atlanta, 1986

—  Linux and OS/161 differ slightly, but the principles are the same

*  Two major data types
- Vfs
*  Represents all file system types
«  Contains pointers to functions to manipulate each file system as a whole
(e.g. mount, unmount)
— Form a standard interface to the file system
—  vnode
*  Represents a file (inode) in the underlying filesystem
* Points to the real inode

*  Contains pointers to functions to manipulate files/inodes (e.g. open, close,
read, write,...)

THE UNIVERSITY OF 10
NEW SOUTH WALES
Rl

Vfs and Vnode Structures

struct vfs .
Generic / * Block size
(FS-independent) - Maxfile size

fields
fs_data
vfs ops
FS-specific
fields

ext2 unmount
ext2 getroot \\

* i-nodes per group
* Superblock address

FS-specific
implementation of
FS operations

THE UNIVERSITY OF 12
NEW SOUTH WALES
]



A look at OS/161’s VFS

Force the
filesystem to
flush its content
to disk

The 0OS161’s file system type
Represents interface to a mounted filesystem

struct fs {
int (*£s_sync) (struct fs *);
const char *(*fs_getvolname) (struct fs *);

struct vnode *(*fs_getroot) (struct fs *);——— | Retrieve the vnode
associated with the

int (*f£s_unmount) (struct fs *);
root of the

filesystem

void *fs_data;

Y Unmount the filesystem
Note: mount called via
function ptr passed to
vfs_mount

Private file system
specific data

THE UNIVERSITY OF 13
NEW SOUTH WALES

Vnode Ops

/* should always be VOP_MAGIC */

struct vnode_ops {
unsigned long vop_magic;

int (*vop_open) (struct vnode *object, int flags_from open) ;
int (*vop_close) (struct vnode *object);
int (*vop_reclaim) (struct vnode *vnode);

int (*vop_read) (struct vnode *file, struct uio *uio);

int (*vop_readlink) (struct vnode *link, struct uio *uio);
int (*vop_getdirentry) (struct vnode *dir, struct uio *uio);
int (*vop_write) (struct vnode *file, struct uio *uio);

int (*vop_ioctl) (struct vnode *object, int op, userptr_t data);
int (*vop_stat) (struct vnode *object, struct stat *statbuf);
int (*vop_gettype) (struct vnode *object, int *result);

int (*vop_tryseek) (struct vnode *object, off_t pos);

int (*vop_fsync) (struct vnode *object);

int (*vop_mmap) (struct vnode *file /* add stuff */);

int (*vop_truncate) (struct vnode *file, off_t len);

int (*vop_namefile) (struct vnode *file, struct uio *uio);

THE UNIVERSITY OF 15
NEW SOUTH WALES

Vnode Ops

» Note that most operations are on vnodes. How do we
operate on file names?

— Higher level APl on names that uses the internal VOP_*
functions

int vfs_open(char *path, int openflags, struct vnode **ret);
void vfs_close(struct vnode *vn);

int vfs_readlink(char *path, struct uio *data);

int vfs_symlink(const char *contents, char *path);

int ves_mkdir(char *path);

int vfs_link(char *oldpath, char *newpath);

int vfs_remove (char *path);

int vfs_rmdir(char *path);

int vfs_rename (char *oldpath, char *newpath);

int vfs_chdir(char *path);
int vfs_getcwd (struct uio *buf);

THE UNIVERSITY OF 17
NEW SOUTH WALES

Retrieve the
volume name

%L

%L

Count the Number of

number of times vnode
“references” V n o d is currently
to this vnode open

struct wvnode { Lock for mutual
- . exclusive
int vn_refcount; access to
int vn_opencount; counts
struct lock *vn_countlock;

* Pointer to FS
struct fs vn_% Pointer to FS containing
void *vn data; specific the vnode

- vnode data
(e.g. inode)

const struct vnode_ops *vn ops;

}; Array of pointers
to functions
operating on

THE UNIVERSITY OF 14
NEW SOUTH WALES vnodes

Vnode Ops

int (*vop_creat) (struct vnode *dir,
const char *name, int excl,
struct vnode **result);
int (*vop_symlink) (struct vnode *dir,
const char *contents, const char *name);
int (*vop_mkdir) (struct vnode *parentdir,
const char *name) ;
int (*vop_link) (struct vnode *dir,
const char *name, struct vnode *file);
int (*vop_remove) (struct vnode *dir,
const char *name) ;
int (*vop_rmdir) (struct vnode *dir,
const char *name) ;

int (*vop_rename) (struct vnode *vnl, const char *namel,
struct vnode *vn2, const char *name2);

int (*vop_lookup) (struct vnode *dir,
char *pathname, struct vnode **result);
int (*vop_lookparent) (struct vnode *dir,
char *pathname, struct vnode **result,
char *buf, size_t len);
};

THE UNIVERSITY OF 16
NEW SOUTH WALES

Example: OS/161 emufs vnode
ops

/*
emufs_file_gettype,
* Function table for emufs emufs_tzys;Zk YP
files. -, !
‘ emufs_fsync,

UNIMP,  /* mmap */
emufs_truncate,
NOTDIR, /* namefile */

static const struct vnode_ops
emufs_fileops = {
VOP MAGIC, /* mark this a

valid vnode ops table */ NOTDIR, /* creat */

NOTDIR, /* symlink */

emufs_open, NOTDIR, /* mkdir */
emufs_close, NOTDIR, /* link */
emufs_reclaim, NOTDIR, /* remove */
- NOTDIR, /* rmdir */
emufs read, NOTDIR, /* rename */

NOTDIR, /* readlink */
NOTDIR, /* getdirentry */
emufs_write,

emufs_ioctl,

emufs_stat,

NOTDIR, /* lookup */
NOTDIR, /* lookparent */



File Descriptor & Open File Tables

Application

FD table
OF table
VFS
FS
Buffer cache

Disk scheduler
Device driver

THE UNIVERSITY OF
NEW SOUTH WALES
==}

File Descriptors

* File descriptors
— Each open file has a file descriptor
— Read/Write/lseek/.... use them to specify
which file to operate on.
» State associated with a file fescriptor
— File pointer

* Determines where in the file the next read or write
is performed

— Mode
* Was the file opened read-only, etc....

THE UNIVERSITY OF 21
NEW SOUTH WALES
e

An Option?

Array of Inodes

fd in RAM
* Single global open
file array L
—fd is an index into fp
the array i-ptr| —— Unodd
— Entries contain file
pointer and pointer
to a vnode
- Rt »
L

Motivation

Application

System call interface:

|

fd = open(“file”,..);
read(fd,..);write(£d,..);1lseek(£d,..); IAD) il
close(fd); OF table
VFS
FS
Buffer cache
VFS interface: i Disk scheduler
vnode = vfs_open(“file”,..); Device driver
vop_read(vnode,uio);
vop_write(vnode,uio);
vop_close(vnode) ;

THE UNIVERSITY OF
NEW SOUTH WALES
o

An Option?

* Use vnode numbers as file descriptors
and add a file pointer to the vnode

* Problems

— What happens when we concurrently open
the same file twice?

* We should get two separate file descriptors and file
pointers....

THE UNIVERSITY OF 22
NEW SOUTH WALES
Rl

Issues
fd
* File descriptor 1 is
stdout L
— Stdout is fp
* console for some V-ptr ~ " Vnode

processes
* A file for others
* Entry 1 needs to be
different per
process!

THE UNIVERSITY OF 24
NEW SOUTH WALES
]




Per-process File Descriptor

Array

* Each process has
its own open file
array
— Contains fp, v-ptr

etc.

— Fd 1 can be any
inode for each
process (console,
log file).

THE UNIVERSITY OF
NEW SOUTH WALES

P1fd
P2 fd

fp

fp
V-ptr|

v-ptr| ——

node|

vnode

25

Per-Process fd table with global
open file table

Per-process file descriptor
array

— Contains pointers to open
file table entry

P1fd

* Open file table array

f-ptr]

p

fp

— Contain entries with a fp
and pointer to an vnode.

Provides

V-ptrr

— Shared file pointers if

required

f-ptr

— Independent file pointers
if required

P2 fd

Example:
— All three fds refer to the

f-ptr

same file, two share a file

pointer, one has an Per-process

independent file pointer  File Descriptor

Tables

fp

" lv-ptr

node|

node|
S

Open File Table 27

Buffer Cache

THE UNIVERSITY OF
NEW SOUTH WALES
=1

Application

FD table

OF table

VFS

FS

Buffer cache

Disk scheduler

Device driver

Issue

* Fork
— Fork defines that the child
shares the file pointer with
the parent
* Dup2
— Also defines the file
descriptors share the file
pointer
* With per-process table, we
can only have independent P2 fd
file pointers

— Even when accessing the
same file

THE UNIVERSITY OF
NEW SOUTH WALES
o

P1fd

fp

V-ptr

L

fp

V-ptr

node

node

26

Per-Process fd table with global
open file table

* Used by Linux and
R P1fd
most other Unix
operating systems
P 9y f—ptr’j fp
V-ptr
fp
p2fd] R | voptr
f-ptr -
Per-process
File Descriptor

Tables

Buffer

* Buffer:

node

node
S

Open File Table 28

— Temporary storage used when transferring

data between two entities

 Especially when the entities work at different rates

* Or when the unit of transfer is incompatible

* Example: between application program and disk

THE UNIVERSITY OF
NEW SOUTH WALES
=1

30



Buffering Disk Blocks

Application
Program

Buffers
in Kernel
RAM
Transfer of
arbitrarily

sized regions
of file

)

* Allow applications to work with

arbitrarily sized region of a file

— However, apps can still
optimise for a particular block

size
reserer [4 ] [10
blocks 11
12|13/ 7
14
5 15
16/ 6
Disk 8

Buffering Disk Blocks

Application
Program

Buffers
in Kernel
RAM

Transfer of
arbitrarily
sized regions
of file

)

* Can implement read-ahead by

pre-loading next block on disk
into kernel buffer

— Avoids having to wait until
next read is issued

Transfer of 4 10

whole

blocks 11
12|13 7
14
5 15
16/ 6
Disk *

Caching Disk Blocks

Application
Program

THE UNIVERSITY OF
NEW SOUTH WALES
=1

Cached
blocks in
Kernel
RAM

Transfer of
arbitrarily
sized regions
of file

)

* On access

— Before loading block from disk,
check if it is in cache first
* Avoids disk accesses

« Can optimise for repeated access

for single or several processes

Transfer of 4 10

whole

blocks 11
12|13 7
14
5 15
16/ 6
Disk ®

Buffering Disk Blocks

* Writes can return immediately
after copying to kernel buffer

Application Buffers - Avoids waiting until write to
Program in Kernel disk is complete
— Write is scheduled in the
RAM background
Transfer of
arbitrarily
sized regions Tr?’\?hséleer of 4 10
of file blocks 11
- ) | 12[13]7
L 14
— o) 15
_ 16| 6
A LR Disk
L1

* Cache:

— Fast storage used to temporarily hold data to
speed up repeated access to the data
* Example: Main memory can cache disk blocks

THE UNIVERSITY OF 34
NEW SOUTH WALES
Rl

Buffering and caching are
related

* Data is read into buffer; extra cache copy
would be wasteful

After use, block should be put in a cache
* Future access may hit cached copy

* Cache utilises unused kernel memory
space; may have to shrink

THE UNIVERSITY OF 36
NEW SOUTH WALES
=1



Unix Buffer Cache Replacement

On read * What happens when the buffer cache is full and

£ .
— Hash the Pt we need to read another block into memory?
device#, block# El .
. . Derke List - — We must choose an existing entry to replace
— Check if match in ‘Hash Table Buffer Cache & & . e
* Need a policy to choose a victim
buffer cache c o
X — Can use First-in First-out
— Yes, simply use — Least Recently Used, or others.
In-memory copy s + Timestamps required for LRU implementation
o * However, is strict LRU what we want?

— No, follow the
collision chain

— If not found, we
load block from
disk into cache

Free List
THE UNIVERSITY OF Felnter THE UNIVERSITY OF 38
NEW SOUTH WALES NEW SOUTH WALES
A L]

1t ot o

File System Consistency File System Consistency
* Generally, cached disk blocks are prioritised in

* File data is expected to survive terms of how critical they are to file system
consistency

* Strict LRU COUId_k_ee_p critical data in — Directory blocks, inode blocks if lost can corrupt
memory forever if it is frequently used. entire filesystem
« E.g. imagine losing the root directory
. g_hise blocks are usually scheduled for immediate write to
is
— Data blocks if lost corrupt only the file that they are
associated with
* These blocks are only scheduled for write back to disk
periodically
* In UNIX, flushd (flush daemon) flushes all modified blocks to
disk every 30 seconds

THE UNIVERSITY OF 39 THE UNIVERSITY OF 40
NEW SOUTH WALES NEW SOUTH WALES
A L]

File System Consistency Disk scheduler

* Alternatively, use a write-through cache
— All modified blocks are written immediately to disk FD table
— Generates much more disk traffic OF table
VFS

* Temporary files written back

* Multiple updates not combined FS
— Used by DOS . Buffer cache
* Gave okay consistency when -
— Floppies were removed from drives Disk scheduler
Device driver

— Users were constantly resetting (or crashing) their machines
— Still used, e.g. USB storage devices

THE UNIVERSITY OF 41 THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
L Lo



Disk Management

* Management and ordering of disk access
requests is important:
—Huge speed gap between memory and disk
— Disk throughput is extremely sensitive to

* Request order = Disk Scheduling

* Placement of data on the disk = file system
design

— Disk scheduler must be aware of disk
geometry

THE UNIVERSITY OF 43
NEW SOUTH WALES

Evolution of Disk Hardware

Parameter IBM 360-KB floppy disk | WD 18300 hard disk
Number of cylinders 40 10601
Tracks per cylinder 2 12
Sectors per track 9 281 (avg)
Sectors per disk 720 35742000
Bytes per sector 512 512
Disk capacity 360 KB 18.3 GB
Seek time (adjacent cylinders) 6 msec 0.8 msec
Seek time (average case) 77 msec 6.9 msec
Rotation time 200 msec 8.33 msec
Motor stop/start time 250 msec 20 sec
Time to transfer 1 sector 22 msec 17 usec

Tl
N

Disk parameters for the original IBM PC floppy disk and
a Western Digital WD 18300 hard disk

Storage Capacity is 50000
times greater

=" Areal Density, Mbitsfinch2

Areal Density of Magnetic HDD and DRAM

00000
1000 E 100%CGR ,~
10000 _Travelstar 2568
F 60% CGR Ultrastar 367,
F[25% = 2 per 3years Ultrastar 36XPy
1000 F— 40 2
F|eo 15 I
L] 100 1 orsair
e : 3350E:!JED g 1M 40% CGR
25% CGR

2000 2010,
a7

Ed Grochowski at Almaden

Disk Geometry

Ll
A
>

« Physical geometry of a disk with two zones
— Outer tracks can store more sectors than inner without exceed max information density
« A possible virtual geometry for this disk

THE UNIVERSITY OF 44
NEW SOUTH WALES
Rl

Things to Note

» Average seek time is approx 12 times better
* Rotation time is 24 times faster

 Transfer time is 1300 times faster
— Most of this gain is due to increase in density

* Represents a gradual engineering improvement

THE UNIVERSITY OF 46
NEW SOUTH WALES
Rl

Estimating Access Time

e Seek time T.: Moving the head to the required track
not linear in the number of tracks to traverse:
=-» startup time
=» settling time
Typical average seek time: a few milliseconds

e Rotational delay:
rotational speed, r, of 5,000 to 10,000rpm
At 10,000rpm, one revolution per 6ms = average delay 3ms

o Transfer time: b
to transfer b bytes, with IV bytes per track: T = N
rl

1
T, =T+ =—+—

Total average access time: TN
r ri

g e



A Timing Comparison
e T, =2ms, r= 10,000 rpm, 512B sect, 320 sect/track

e Read a file with 2560 sectors (= 1.3MB)

o File stored compactly (8 adjacent tracks):
Read first track
Average seek 2ms
Rot. delay 3ms
Read 320 sectors  6ms
11ms = All sectors: 11 + 7+ g = 67 ms
e Sectors distributed randomly over the disk:
Read any sector
Average seek 2ms
Rot. delay 3ms
Read 1 sector 0.01875ms
5.01875ms = All: 2560 % 5.01875 = 20, 328ms

Disk Arm Scheduling Algorithms

* Time required to read or write a disk
block determined by 3 factors
1. Seek time
> Rotational delay
s Actual transfer time
* Seek time dominates
* For a single disk, there will be a
number of I/O requests

— Processing them in random order leads
to worst possible performance

THE UNIVERSITY OF 51
NEW SOUTH WALES
e

Shortest Seek Time First

» Select request that minimises the seek time
* Generally performs much better than FIFO
* May lead to starvation

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

25

50

75
100
125
150
175

199

Disk Performance is Entirely Dominated

seek time and rotation 0% -
speed
80%
— Note it has been easier
to spin the disk faster 0% :;’;“srg
than improve seek time 0% Seck
* Operating System 20%
should minimise o
mechanical delays as ! 2
" [ Transter 22 0.017
much as possible [aRot 0w w0 a6
(o seek 77 69

THE UNIVERSITY OF
NEW SOUTH WALES
o

25
50
75
100
125
150
175

by Seek and Rotational Delays

Will only get worse as
capacity increases much
faster than increase in

Average Access Time Scaled to 100%

First-in, First-out (FIFO)
Process requests as they come
Fair (no starvation)
Good for a few processes with clustered requests
Deteriorates to random if there are many processes

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

\j

199

Elevator Algorithm (SCAN)

Move head in one direction

— Services requests in track order until it reaches the last track,
then reverses direction

Better than FIFO, usually worse than SSTF

* Avoids starvation

25
50
75
100
125
150
175
199

Makes poor use of sequential reads (on down-scan)
Less Locality

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184




25
50
75
100
125
150
175
199

Modified Elevator (Circular SCAN, C-SCAN)

Like elevator, but reads sectors in only one direction
— When reaching last track, go back to first track non-stop

Better locality on sequential reads
Better use of read ahead cache on controller
Reduces max delay to read a particular sector

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184




