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Learning Outcomes

• High-level understand what is an operating 

system and the role it plays

• A high-level understanding of the structure of 
operating systems, applications, and the operating systems, applications, and the 
relationship between them.

• Some knowledge of the services provided by 
operating systems.

• Exposure to some details of major OS 
concepts.
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What is an Operating 

System?
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Viewing the Operating System as 

an Abstract Machine

• Extends the basic hardware with added 
functionality

• Provides high-level abstractions• Provides high-level abstractions

– More programmer friendly

– Common core for all applications

• It hides the details of the hardware

– Makes application code portable
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Viewing the Operating System 

as a Resource Manager

• Responsible for allocating resources to users 

and processes

• Must ensure

– No Starvation

– Progress

– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share; 
limits (quotas), etc…

– Overall, that the system is efficiently used
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Traditional View: the Operating 

System as the Privileged  Component

Requests (System Calls)

Applications Applications Applications

User Mode
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Kernel

• Portion of the operating system that is 
running in privileged mode

• Usually resident in main memory• Usually resident in main memory

• Contains fundamental functionality
– Whatever is required to implement other 

services

– Whatever is required to provide security

• Contains most-frequently used functions

• Also called the nucleus or supervisor
9



The Operating System is 

Privileged

• Applications should not be able to interfere or bypass 

the operating system

– OS can enforce the “extended machine”

– OS can enforce its resource allocation policies– OS can enforce its resource allocation policies

– Prevent applications from interfering with each other
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Structure of a Computer System

System Libraries

Application

System Libraries

Application

Memory
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Structure of a Computer System

System Libraries

Application

Memory
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Structure of a Computer System

System Libraries

Application

Applications interact with 

themselves and via 

function calls to library 

procedures

Memory
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Structure of a Computer System

System Libraries

Application

Interaction via

System Calls

Memory
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Privilege-less OS

• Some Embedded OSs have no 

privileged component

– e.g. PalmOS, Mac OS 9, RTEMS

– Can implement OS functionality, – Can implement OS functionality, 
but cannot enforce it.

• All software runs together

• No isolation

• One fault potentially brings down entire 

system
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A note on System Libraries

System libraries are just that, libraries of support 

functions (procedures, subroutines)

– Only a subset of library functions are actually systems calls

• strcmp(), memcpy(), are pure library functions• strcmp(), memcpy(), are pure library functions
– manipulate memory within the application, or perform computation

• open(), close(), read(), write() are system calls
– they cross the user-kernel boundary, e.g. to read from disk device

– Implemenation mainly focused on passing request to OS and returning 
result to application

– System call functions are in the library for convenience
• try man syscalls on Linux
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Operating System Objectives
• Convenience

– Make the computer more convenient to use

• Abstraction
– Hardware-independent programming model

• Efficiency
– Allows the computer system to be used in an efficient manner– Allows the computer system to be used in an efficient manner

• Ability to evolve
– Permit effective development, testing, and introduction of new 

system functions without interfering with existing services

• Protection
– allow only authorised access to data, computation, services, etc. 
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Services Provided by the 

Operating System
• Program execution

– Load a program and its data

• Access to I/O devices
– Display, disk, network, printer, keyboard, camera, – Display, disk, network, printer, keyboard, camera, 

etc.

• Controlled access to files
– Access protection

• System access
– User authentication
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Services Provided by the 

Operating System

• Error detection and response

– internal and external hardware errors

• memory error• memory error

• device failure

– software errors

• arithmetic overflow

• access forbidden memory locations

– operating system cannot grant request of 

application
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Services Provided by the 

Operating System

• Accounting

– collect statistics

– monitor performance– monitor performance

• diagnose lack of it

– used to anticipate future enhancements

– used for billing users
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Operating System Software

• Fundamentally, OS functions the 
same way as ordinary computer 
software

– It is a program that is executed 

(just like apps)

System Libraries

Application

(just like apps)

– It has more privileges

• Operating system relinquishes 
control of the processor to execute 
other programs

– Reestablishes control after

• System calls

• Interrupts (especially timer 

interrupts)
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Major OS Concepts 

(Overview)

• Processes

• Concurrency and deadlocks

• Memory management• Memory management

• Files

• Scheduling and resource management

• Information Security and Protection
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Processes
• A program in execution

• An instance of a program running on a computer

• The entity that can be assigned to and executed on a 
processor

• A unit of resource ownership• A unit of resource ownership
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Process• Consist of three 
segments
– Text

• contains the code 
(instructions)

– Data

• Global variables

Stack

Gap

Memory

• Global variables

– Stack

• Activation records of 
procedure

• Local variables 

• Note:
– data can dynamically grow 

up

– The stack can dynamically 
grow down
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Process

• Consists of three components
– An executable program

• text

– Associated data needed by the program– Associated data needed by the program
• Data and stack

– Execution context of the program
• All information the operating system needs to 

manage the process
– Registers, program counter, stack pointer, etc…
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Multiple processes creates 

concurrency issues

(a) A potential deadlock. (b) an actual deadlock.
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Memory Management
• The view from thirty thousand feet

– Process isolation
• Prevent processes from accessing each others data

– Automatic allocation and management
• Don’t want users to deal with physical memory directly

– Protection and access control
• Still want controlled sharing

– Long-term storage

– OS services
• Virtual memory

• File system

27



Virtual Memory

• Allows programmers to address 
memory from a logical point of view
– Gives apps the illusion of having RAM to 

themselvesthemselves

– Logical addresses are independent of 
other processes

– Provides isolation of processes from each 
other

• Can overlap execution of one process 
while swapping in/out others.
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Virtual Memory Addressing

29



File System

• Implements long-term store

• Information stored in named objects 
called filescalled files
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Example File System
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Information Protection and 

Security

• Access control

– regulate user access to the system

– Involves authentication– Involves authentication

• Information flow control

– regulate flow of data within the system and 

its delivery to users
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Scheduling and Resource 

Management

• Fairness

– give equal and fair access to all processes

• Differential responsiveness• Differential responsiveness

– discriminate between different classes of jobs

• Efficiency

– maximize throughput, minimize response time, 

and accommodate as many uses as possible
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Operating System 

Structure?
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Operating System Structure

• The layered approach

a) Processor allocation 
and multiprogramming

b) Memory Management

c) Devices

d) File system

e) Users

– Each layer depends on 

the inner layers
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Operating System 

Structure

• In practice, layering is only a guide

– Operating Systems have many 

interdependenciesinterdependencies

• Scheduling on virtual memory

• Virtual memory on I/O to disk

• VM on files (page to file)

• Files on VM (memory mapped files)

• And many more…
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The Monolithic Operating 

System Structure

• Also called the 
“spaghetti nest” 
approachapproach

– Everything is 

tangled up with 

everything else. 

• Linux, Windows, 
….
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The Monolithic Operating 

System Structure
• However, some 

reasonable structure 
usually prevails
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Computer Hardware 

ReviewReview
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Learning Outcomes

• Understand the basic components of 
computer hardware

– CPU, buses, memory, devices controllers, – CPU, buses, memory, devices controllers, 

DMA, Interrupts, hard disks

• Understand the concepts of memory 
hierarchy and caching, and how they 
affect performance. 
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Operating Systems

• Exploit the hardware available

• Provide a set of high-level services that 
represent or are implemented by the 
hardware.
represent or are implemented by the 
hardware.

• Manages the hardware reliably and 
efficiently

• Understanding operating systems 
requires a basic understanding of the 
underlying hardware
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Basic Computer Elements
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Basic Computer Elements
• CPU

– Performs computations

– Load data to/from memory via system bus

• Device controllers
– Control operation of their particular device

– Operate in parallel with CPU– Operate in parallel with CPU

– Can also load/store to memory (Direct Memory Access, DMA)

– Control register appear as memory locations to CPU 

• Or I/O ports 

– Signal the CPU with “interrupts”

• Memory Controller
– Responsible for refreshing dynamic RAM

– Arbitrating access between different devices and CPU
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The real world is logically similar, 

but more complex
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A Simple Model of CPU 

Computation

• The fetch-execute cycle
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A Simple Model of CPU 

Computation
• The fetch-execute cycle

– Load memory contents from 

address in program counter 

(PC) PC: 0x0300

CPU Registers

(PC)

• The instruction

– Execute the instruction

– Increment PC

– Repeat
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A Simple Model of CPU 

Computation
• Stack Pointer

• Status Register
– Condition codes

• Positive result
PC: 0x0300

CPU Registers

• Zero result

• Negative result

• General Purpose Registers
– Holds operands of most instructions

– Enables programmers (compiler) to 
minimise memory references.
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Privileged-mode Operation

• To protect operating system 
execution, two or more CPU 
modes of operation exist
– Privileged mode (system-, 

CPU Registers

Interrupt Mask

Exception Type

Others

MMU regs

– Privileged mode (system-, 
kernel-mode)

• All instructions and registers are 
available

– User-mode
• Uses ‘safe’ subset of the 

instruction set

– E.g. no disable interrupts 
instruction

• Only ‘safe’ registers are 
accessible
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‘Safe’ registers and 

instructions

• Registers and instructions are safe if

– Only affect the state of the application itself 

– They cannot be used to uncontrollably – They cannot be used to uncontrollably 

interfere with

• The operating system

• Other applications

– They cannot be used to violate a correctly 

implemented operating system.
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Privileged-mode Operation

• The accessibility of 
addresses within an 
address space 

Memory Address Space

Accessible only

to

Kernel-mode

0xFFFFFFFF

address space 
changes depending 
on operating mode

– To protect kernel code 

and data
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I/O and Interrupts
• I/O events (keyboard, mouse, incoming network 

packets) happen at unpredictable times

• How does the CPU know when to service an I/O 
event? 
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Interrupts

• An interruption of the normal sequence of 

execution

• A suspension of processing caused by an event 

external to that processing, and performed in 

such a way that the processing can be resumed.

• Improves processing efficiency

– Allows the processor to execute other instructions 

while an I/O operation is in progress

– Avoids unnecessary completion checking (polling)
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Interrupt Cycle

• Processor checks for interrupts

• If no interrupts, fetch the next instruction

• If an interrupt is pending, divert to the 

interrupt handlerinterrupt handler
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Classes of Interrupts

• Program exceptions

(also called synchronous interrupts)

– Arithmetic overflow

– Division by zero

– Executing an illegal/privileged instruction

– Reference outside user’s memory space.

• Asynchronous (external) events

– Timer

– I/O

– Hardware or power failure 55



Interrupt Handler

• A software routine that determines the 
nature of the interrupt and performs 
whatever actions are needed.whatever actions are needed.

• Control is transferred to the handler by 
hardware.

• The handler is generally part of the 
operating system.
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Simple Interrupt

User Mode
Application
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Memory Hierarchy

• Going down the 

hierarchy

– Decreasing cost per 

bit

– Increasing capacity

– Increasing access – Increasing access 

time

– Decreasing 

frequency of access 

to the memory by the 

processor

• Hopefully

• Principle of locality!!!!!
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Memory Hierarchy
• Rough (somewhat dated) approximation of 

memory hierarchy
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Cache

• Cache is fast memory placed between the CPU and main memory 
– 1 to a few cycles access time compared to RAM access time of tens –

hundreds of cycles

CPU

Registers
Cache Main Memory

Word Transfer Block Transfer

• Holds recently used data or instructions to save memory accesses.
• Matches slow RAM access time to CPU speed if high hit rate
• Is hardware maintained and (mostly) transparent to software
• Sizes range from few kB to several MB.
• Usually a hierarchy of caches (2–5 levels), on- and off-chip.
• Block transfers can achieve higher transfer bandwidth than single 

words.
– Also assumes probability of using newly fetch data is higher than the 

probability of reuse ejected data.
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Moving-Head Disk Mechanism
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Example Disk Access Times

• Disk can read/write data relatively fast
– 15,000 rpm drive - 80 MB/sec

– 1 KB block is read in 12 microseconds

• Access time dominated by time to locate the • Access time dominated by time to locate the 
head over data
– Rotational latency

• Half one rotation is 2 milliseconds

– Seek time
• Full inside to outside is 8 milliseconds

• Track to track .5 milliseconds

• 2 milliseconds is 164KB in “lost bandwidth”
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A Strategy: Avoid Waiting for 

Disk Access

• Keep a subset of the disk’s data in 
memory

⇒ Main memory acts as a cache of disk ⇒ Main memory acts as a cache of disk 
contents

63



Two-level Memories and Hit 

Rates

• Given a two-level memory,

– cache memory and main memory (RAM)

– main memory and disk– main memory and disk

what is the effective access time?

• Answer: It depends on the hit rate in the 
first level.
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Effective Access Time
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Example

• Cache memory access time 1ns

• Main memory access time 10ns

• Hit rate of 95% 

66

9

99

9

105.1

)101010()95.01(

1095.0

−

−−

−

×=

×+×−

+×=effT


