File Management

Tanenbaum, Chapter 4

COMP3231
Operating Systems

THE UNIVERSITY OF 1
NEW SOUTH WALES
Lt

Outline

* Files and directories from the programmer
(and user) perspective

* Files and directory internals — the
operating system perspective

THE UNIVERSITY OF 2
NEW SOUTH WALES
Lt

Files

* Named repository for data

— Potentially large amount of data
» Beyond that available in memory

— File lifetime is independent of process lifetime
— Used to share data between processes
» Convenience
— Input to applications is by means of a file
— Output is saved in a file for long-term storage

THE UNIVERSITY OF 3
NEW SOUTH WALES
Lt

File Management

+ File management system is considered
part of the operating system
— Manages a trusted, shared resource
— Bridges the gap between:
* low-level disk organisation (an array of blocks),

* and the programmer’s views (a stream or
collection of records)

» Also includes tools outside the kernel

— E.g. formatting, recovery, defrag, consistency,
and backup utilities.

THE UNIVERSITY OF 4
NEW SOUTH WALES
Lt

Objectives for a
File Management System

* Provide a cqnvenient naming + Optimise performance
system for files L -
. . Minimize or eliminate the
* Provide uniform I/O support for tential for lost or dest "
a variety of storage device potential for lost or destroye
types data
— Same file abstraction for disk, ~ * Provide I/O support and
network, tape.... access control for multiple
* Provide a standardized set of users
1/0O interface routines
— Storage device drivers
interchangeable
» Ensure that the data in the file
is valid

« Support system administration
(e.g., backups)

THE UNIVERSITY OF 5
NEW SOUTH WALES
L

File Names

» File system must provide a convenient naming
scheme
— Textual Names
— May have restrictions
« Only certain characters
— E.g. no / characters
« Limited length
« Only certain format
- EgDOS,8+3
— Case (in)sensitive
— Names may obey conventions (.c files or C files)
« Interpreted by tools (UNIX)
« Interpreted by operating system (Windows)

THE UNIVERSITY OF 6
NEW SOUTH WALES
L

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.git Compuserve Graphical Interchange Format image
file.hip Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formaiting program

file.txt General text file

file.zip Compressed archive

Typical file extensions.

THE UNIVERSITY OF 7
NEW SOUTH WALES
Lt

File Structure

1Byte 1 Record

Ant

[Cat Joow [0%s] [Goat][Ton [0w] [om] 7t [worm]

e

(a) (b)

* Three kinds of files
— byte sequence
— record sequence
— key-based, tree structured

NEW SOUTH WALES

E iy « e.g. IBM's indexed sequential access method (ISAM)
THE UNIVERSITY OF 8
L

File Structure

Stream of Bytes * Records
— Collection of bytes
treated as a unit
» Example: employee

— OS considers a file to
be unstructured

— Simplifies file
record
management for the)
0s — Operations at the level
Aoplicati of records (read_rec,
— Applications can write_rec)

impose their own
structure

— Used by UNIX,
Windows, most
modern OSes

THE UNIVERSITY OF 9
NEW SOUTH WALES
Lt

— File is a collection of
similar records

— OS can optimise
operations on records

File Structure

» Tree of Records
— Records of variable length
— Each has an associated key
— Record retrieval based on key

— Used on some data processing systems (mainframes)
« Mostly incorporated into modern databases

THE UNIVERSITY OF 10
NEW SOUTH WALES
Lt

File Types

* Regularfiles
* Directories
* Device Files
— May be divided into
« Character Devices — stream of bytes
« Block Devices
» Some systems distinguish between regular file types
— ASCI| text files, binary files
« At minimum, all systems recognise their own executable
file format
— May use a magic number

THE UNIVERSITY OF "
NEW SOUTH WALES
L

File Types

Module

Magic number oader name
Toxtsze
Data st \ .
i 555 v \
§ [Symoomvosm Otect \\ Gunor
[Emypom \ [oteton
l 7777722, \ Size
Flags Header !
Tt Object
modia
Data Header
Relocaton
s
Oject
o modie
e
(@) (b)
(a) An executable file (b) An archive (libxyz.a)
E THE UNIVERSITY OF 12
NEW SOUTH WALES
L

File Access Types

+ Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up
— convenient when medium was mag tape
* Random access
— bytes/records read in any order
— essential for data base systems

—read can be ...
» move file pointer (seek), then read or
— Iseek(location,...);read(...)
« each read specifies the file pointer
— read(location,...)

THE UNIVERSITY OF 13
NEW SOUTH WALES
Lt

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files: 1 for system file
‘Archive flag 0 for has been backed up; 1 for needs to be backed up.
ASCll/binary flag 0 for ASCII file; 1 for binary file
Random access flag | 0 for sequential access only; 1 for random access
Temporary flag 0 for normal; 1 for delete file on process exit
Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record
Key position Offset of the key within each record
Key length Number of bytes in the key field
Creation time Date and time the file was created
Time of last access Date and time the file was last accessed
Time of last change Date and time the file has last changed
Current size Number of bytes in the file
Maximum size Number of bytes the file may grow to

Possible file attributes

e

Typical File Operations

1.Create 7. Append
2.Delete 8.Seek

3.Open 9. Get
4. Close attributes

5.Read 10.Set
6. Write Attributes

11.Rename

THE UNIVERSITY OF 15
NEW SOUTH WALES
Lt

An Example Program Using File System Calls
(1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlb.h>

#include <unistd.h>

int main(int argc, char *argvl]): /% ANSI prototype */
#define BUF _SIZE 4096 /% use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv{])

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (arge != 3) exit(1); /% syntax error if argc is not 3 */

THE UNIVERSITY OF 16
NEW SOUTH WALES
Lt

An Example Program Using File System Calls
(2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /% if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); / create the destination file */
if (out_fd < 0) exit(3); /+ if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd_count <= 0) break; /= if end of file or error. exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

)

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

}
m THE UNIVERSITY OF 17
NEW SOUTH WALES
L

File Organisation and Access
Programmer’s Perspective

» Given an operating system supporting
unstructured files that are a stream-of-bytes,

how can one organise the contents of the files?

THE UNIVERSITY OF 18
NEW SOUTH WALES
L

» Performance
considerations:

— File system performance
affects overall system
performance

— Organisation of the file
system on disk affects
performance

— File organisation (data
layout inside file) affects
performance

« indirectly determines
access patterns

THE UNIVERSITY OF
NEW SOUTH WALES
Lt

File Organisation and Access
Programmer’s Perspective

* Possible access patterns:
— Read the whole file

— Read individual blocks or
records from a file

— Read blocks or records
preceding or following the
current one

— Retrieve a set of records

— Write a whole file
sequentially

— Insert/delete/update
records in a file

— Update blocks in a file

THE UNIVERSITY OF 20
NEW SOUTH WALES
Lt

Classic File Organisations

» There are many ways to organise a file’s
contents, here are just a few basic
methods
— Unstructured Stream (Pile)

— Sequential Records
—Indexed Sequential Records
— Direct or Hashed Records

« Rapid access

« read from start to finish
« Ease of update

» Economy of storage

Criteria for File Organization

Things to consider when designing file layout

— Needed when accessing a single record
— Not needed for batch mode

— File on CD-ROM will not be updated, so this is not a concern

— Should be minimum redundancy in the data

Unstructured Stream

* Data are collected in
the order they arrive

* Purpose is to
accumulate a mass of
data and save it

» Records may have
different fields

— Redundancy can be used to speed access such as an index
« Simple maintenance
* Reliability

THE UNIVERSITY OF 21
NEW SOUTH WALES
Lt

* No structure

» Record access is by
exhaustive search

THE UNIVERSITY OF
NEW SOUTH WALES
Lt

Varlahle-length meorls.
Variabie selof feids
Chmsntogieal order

{a) Pile File

Figure 12.3 Common File Organizationy

Unstructured Stream Performance

» Update
— Same size record -
okay
— Variable size - poor
* Retrieval
— Single record - poor
— Subset — poor

Varlahle-length meorls.
Variabie selof feids
Chmsntogieal order

— Exhaustive - okay

{a) Pile File

A L
| o _ Figure 12.3 Common File Organizationy

« Fixed format used for
records
* Records are the same
length
* Field names and lengths
are attributes of the file
* One field is the key field
— Uniquely identifies the
record
— Records are stored in key
sequence

THE UNIVERSITY OF
NEW SOUTH WALES
L

The Sequential File

Poeg eng b RCoRIS
Frxed sel of Mekds ia Mxed onder
Sequential order hased oa key flekd

() Secuential File

Figure 12.3 Common File Organizationy

The Sequential File

* Update
— Same size record -
good
— Variable size — No
* Retrieval
— Single record - poor
— Subset — poor

Poeg eng b RCoRIS
Frxed sel of Mekds ia Mxed onder
Sequential order hased oa key flekd

— Exhaustive - okay

() Secuential File

A L
| o _ Figure 12.3 Common File Organizationy

Indexed Sequential File

* Index provides a lookup e

capability to quickly reach the

vicinity of the desired record

— Contains key field and a pointer Index
to (location in) the main file

— Indexed is searched to find
highest key value that is equal
or less than the desired key Key
value File Ptr

— Search continues in the main file
at the location indicated by the

pointer

THE UNIVERSITY OF 26
NEW SOUTH WALES
Lt

Comparison of sequential and
indexed sequential lookup

+ Example: a file contains 1 million records

* On average 500,000 accesses are
required to find a record in a sequential file

+ If an index contains 1000 entries, it will
take on average 500 accesses to find the
key, followed by 500 accesses in the main
file. Now on average it is 1000 accesses

THE UNIVERSITY OF 27
NEW SOUTH WALES
Lt

Indexed Sequential File

» Update Fe
— Same size record -
good Index
— Variable size - No
* Retrieval
— Single record - good Key
— Subset — poor File Ptr
— Exhaustive - okay

THE UNIVERSITY OF 28
NEW SOUTH WALES
Lt

The Direct, or Hashed File

» Key field required for each
record

» Key maps directly or via a
hash mechanism to an
address within the file

« Directly access a data
record at a the known
address

* Note: File is sparsely
populated

Hashed
File

THE UNIVERSITY OF 29
NEW SOUTH WALES
L

The Direct, or Hashed File

» Update

— Same size record - good

— Variable size — No

* Fixed sized records used key

* Retrieval

— Single record - excellent

— Subset — poor

— Exhaustive - poor

Hashed
File

THE UNIVERSITY OF 30
NEW SOUTH WALES
L

File Directories

+ Contains information about files
— Attributes
— Location
— Ownership

+ Directory itself is a file owned by the
operating system

* Provides mapping between file names and
the files themselves

THE UNIVERSITY OF 31
NEW SOUTH WALES
Lt

Simple Structure for a Directory

« List of entries, one for each file

« Sequential file with the name of
the file serving as the key

» Provides no help in organising the
files
Forces user to be careful not to
use the same name for two
different files

» Large number of files inefficient to
manage both from user and . Root directory

operating system perspective.

THE UNIVERSITY OF 32
NEW SOUTH WALES
Lt

Two-level Scheme for a
Directory

* One directory for each user and a master directory
» Master directory contains entry for each user
— Provides access control information
« Each user directory is a simple list of files for that user
« Still provides no help in structuring collections of files

<—Root directory

33

THE UNIVERSITY €
NEW SOUTH WAL N
| O Files

Hierarchical, or Tree-Structured
Directory

» Master directory with user directories
underneath it

» Each user directory may have subdirectories
and files as entries

Root directory

User
directory. .
A

THE UNIVERSITY OF
NEW SOUTH WALES
Lt

Hierarchical, or Tree-Structured
Directory

+ Files can be located by following a path
from the root, or master, directory down
various branches
— This is the absolute pathname for the file

» Can have several files with the same file
name as long as they have unique path
names

* Directories are generally smaller and thus
more efficient to manage.

THE UNIVERSITY OF
NEW SOUTH WALES

35

===l

bin |<— Root directory

etc

lib

usr
tmp lﬁ

il jim
~— /usr/jim
m T+ (I % 36
NE
L

Current Working Directory

» Always specifying the absolute pathname
for a file is tedious!
* Introduce the idea of a working directory

— Files are referenced relative to the working
directory

» Example: cwd = /home/kevine
.profile = /home/kevine/.profile

THE UNIVERSITY OF 37
NEW SOUTH WALES
Lt

Relative and Absolute
Pathnames

* Absolute pathname

— A path specified from the root of the file system to the file
* A Relative pathname

— A pathname specified from the cwd

* Note: ‘.’ (dot) and *..” (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine
../../etc/passwd

/etc/passwd
../kevine/../.././etc/passwd
Are all the same file

THE UNIVERSITY OF 38
NEW SOUTH WALES
Lt

Typical Directory Operations

Nice properties of UNIX naming

convention

* From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BINJCAT_V.EXE;13

THE UNIVERSITY OF 41
NEW SOUTH WALES
L

1. Create 5. Readdir » Simple, regular format
6.R — Names referring to different servers, objects,
2. Delete . Rename etc., have the same syntax.
. i * Regular tools can be used where specialised tools
3' Opendlr 7 Llnk would be otherwise be needed.
4. Closedir 8. Unlink + Location independent
— Objects can be distributed or migrated, and
continue with the same names.
THE UNIVERSITY OF 39 THE UNIVERSITY OF 40
-@ NEW SOUTH WALES -@ NEW SOUTH WALES
An example of a bad namin . .
P g File Sharing

* In multiuser system, allow files to be
shared among users

* Two issues
— Access rights
— Management of simultaneous access

THE UNIVERSITY OF 42
NEW SOUTH WALES
L

Access Rights

* None
— User may not know of the existence of the file

— User is not allowed to read the user directory
that includes the file

* Knowledge

— User can only determine that the file exists
and who its owner is

THE UNIVERSITY OF 43
NEW SOUTH WALES
Lt

Access Rights

» Execution

— The user can load and execute a program but
cannot copy it

* Reading

— The user can read the file for any purpose,
including copying and execution

* Appending

— The user can add data to the file but cannot
modify or delete any of the file’s contents

THE UNIVERSITY OF 44
NEW SOUTH WALES
Lt

Access Rights

» Updating
— The user can modify, deleted, and add to the
file’'s data. This includes creating the file,
rewriting it, and removing all or part of the
data

» Changing protection

— User can change access rights granted to
other users

* Deletion
— User can delete the file

THE UNIVERSITY OF 45
NEW SOUTH WALES
Lt

Access Rights

» Owners
— Has all rights previously listed
— May grant rights to others using the following
classes of users
* Specific user
» User groups
« All for public files

THE UNIVERSITY OF 46
NEW SOUTH WALES
Lt

Case Study:

UNIX Access Permissions
total 1704
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

* First letter: file type
d for directories
- for regular files)

» Three user categories
user, group, and other

THE UNIVERSITY OF 47
NEW SOUTH WALES
L

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

» Three access rights per categoi’y
read, write, and execute

drwxrwxrwx

user group other

THE UNIVERSITY OF 48
NEW SOUTH WALES
L

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
—-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
—rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

* Execute permission for directory?

— Permission to access files in the directory
» To list a directory requires read permissions
* What about drwxr-x—x?

THE UNIVERSITY OF 49
NEW SOUTH WALES
Lt

UNIX Access Permissions

* Shortcoming
— The three user categories a rather coarse
* Problematic example
— Joe owns file foo.bar
— Joe wishes to keep his file private
« Inaccessible to the general public
— Joe wishes to give Bill read and write access
— Joe wishes to give Peter read-only access

Simultaneous Access

* Most Oses provide mechanisms for users to
manage concurrent access to files
— Example: lockf(), flock() system calls

» Typically
— User may lock entire file when it is to be updated

— User may lock the individual records during the
update

* Mutual exclusion and deadlock are issues for
shared access

THE UNIVERSITY OF 51
NEW SOUTH WALES
Lt

THE UNIVERSITY OF
NEW SOUTH WALES
Lt

50

