Disk 1/O Management

Chapter 5

T - THE UNIVERSITY OF
NEW SOUTH WALES




Disk Management

 Management and ordering of disk access
requests is important:

— Huge speed gap between memory and disk

— Disk throughput is extremely sensitive to
* Request order = Disk Scheduling
« Placement of data on the disk = file system
design
— Disk scheduler must be aware of disk
geomelry

BB THE UNIVERSITY OF °

Bt LN
it NEW SOUTH WALES



Disk Geometry

* Physical geometry of a disk with two zones

— OQOuter tracks can store more sectors than inner without exceed
max information density

— ° A possible virtual geometry for this disk

- *;! THE UNIVERSITY OF 3
NEW SOUTH WALES




Evolution of Disk Hardware

Parameter IBM 360-KB floppy disk | WD 18300 hard disk
Number of cylinders 40 10601
Tracks per cylinder 4 12
Sectors per track 9 281 (avQ)
Sectors per disk 720 35742000
Bytes per sector 512 512
Disk capacity 360 KB 18.3 GB
Seek time (adjacent cylinders) 6 msec 0.8 msec
Seek time (average case) /7 msec 6.9 msec
Rotation time 200 msec 8.33 msec
Motor stop/start time 250 msec 20 sec
Time to transfer 1 sector 22 msec 17 usec

Disk parameters for the original IBM PC floppy disk and

a Western Digital WD 18300 hard disk




Things to Note

* Average seek time is approx 12 times
better

 Rotation time is 24 times faster

* Transfer time is 1300 times faster
— Most of this gain is due to increase in density

* Represents a gradual engineering
Improvement

Rl THE UNIVERSITY OF >

}':\,; NEW SOUTH WALES




Storage Capacity is 50000
times greater

AREALSAE. PRI

Areal Density of Magnetic HDD and DRAM

100000

%_ 100% CGR y /

10000 I TTrauaI-_E.tar 25GS .
g 60% CGR l:'ﬂiﬁr 3 'qu L
" 25% = 2X per 3 years y Llllras.tar ;i; e

1000 E_ 40 z Uhrsar IF' go” TUZAM
> b 256M
100 —| 100 1

: 40% CGR
- 29% CGR

10

Areal Density, Mbits/inch2

o
— —
T T rITey ""I”T LB RAIL |

1970 1980 1980 2000 2010

=EE“==E Year Ed Grochowski at Almaden




IBM 3380 — First Gigabyte Disk

Circa.early 1981
Approx: $100,000




Disk Performance

« Disk is a moving device = must be positioned correctly
for 1/0

« Execution of a disk operation involves

— Wait time: the process waits to be granted device access
« Wait for device: time the request spend in wait queue
» Wait for channel: time until a shared |I/O channel is available
— Access time: time hardware need to position the head
» Seek time: position the head at the desire track
» Rotational delay (latency): spin disk to the desired sector

— Transfer time: sectors to be read/written rotate below head

Wait for Wait for Seek Rotational Data
Device Channel Delay Transfer

Device Busy >




Estimating Access Time

e Seek time 1,: Moving the head to the required track
not linear in the number of tracks to traverse:
=¥ startup time

=¥ settling time
Typical average seek time: a few milliseconds

e Rotational delay:
rotational speed, r, of 5,000 to 10,000rpm
At 10,000rpm, one revolution per 6ms =- average delay 3ms

e [ransfer time: b
to transfer b bytes, with N bytes per track: T = ~
N

1 b

Total average access time: T, =T+ 5 + N
N

@ INCVV DUU I T VVALLCD



A Timing Comparison

eI, =2ms,r = 10,000 rpm, 512B sect, 320 sect/track
e Read a file with 2560 sectors (= 1.3MB)

e File stored compactly (8 adjacent tracks):
Read first track

Average seek 2ms
Rot. delay 3ms
Read 320 sectors 6ms
11ms = All sectors: 11 + 7% 8 = 67 ms
e Sectors distributed randomly over the disk:
Read any sector
Average seek 2ms
Rot. delay 3ms
Read 1 sector 0.01875ms
5.01875ms = All: 2560 % 5.01875 = 20, 328ms




Disk Comparative Performance

Average Access Time
250
200
9 150 O Transfer
2 m Rot. Del.
= 100 | o Seek
50
0 =
1 2
O Transfer 22 0.017
m Rot. Del. 100 4.165
O Seek 77 6.9
Disk
=
LRl ] THE UNIVERSITY OF 11

@il NEW SOUTH WALES



Disk Performance is Entirely Dominated
by Seek and Rotational Delays

* Will only get worse as
capacity increases much

faster than increase in Average Access Time Scaled to 100%
seek time and rotation 00
speed
. . 80%
— Note it has been easier
to spin the disk faster 60% ::at"sge:
. . otl. Del.
than improve seek time 40% m Seek
* Operating System 0%
should minimise .
mechanical delays as 1 2
. O Transfer 22 0.017
much as possible
O Seek 77 6.9
Disk
B 11iE UNIVERSITY OF 12

@58 NEW SOUTH WALES




Low-level Disk Formatting

Preamble Data ECC

A disk sector

s - THE UNIVERSITY OF 13
NEW SOUTH WALES




Low-level Disk Formatting

* When reading
sequential blocks,
the seek time can
result in missing
block O in the next

track

* Disk can be
formatted using a
cylinder skew to
avoid this

==
SR THE UNIVERSITY OF
@l NEW SOUTH WALES

(&3
s

14



Low-Level Disk Formatting

(a) (b) (c)
« |ssue: After reading one sector, the time it takes to

transfer the data to the OS and receive the next request
results in missing reading the next sector

« To overcome this, we can use interleaving
a) No interleaving
b) Single interleaving
c) Double interleaving

15




Low-Level Disk Formatting

* Modern drives can overcome interleaving
type issues by simply reading the entire
track (or part thereof) into the on-disk
controller and caching it.

16

s - THE UNIVERSITY OF
NEW SOUTH WALES




Disk Arm Scheduling Algorithms

 Time required to read or write a disk
block determined by 3 factors
1. Seek time
2. Rotational delay
5. Actual transfer time

e Seek time dominates

* For a single disk, there will be a
number of I/O requests

— Processing them in random order leads
to worst possible performance
) 17

SEL] THE UNIVERSITY OF
NEW SOUTH WALES




First-in, First-out (FIFO)
* Process requests as they come
« Fair (no starvation)

« (Good for a few processes with clustered requests
« Deteriorates to random if there are many processes

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

0

25
50
75
100
125
150
175

199 >




Shortest Seek Time First

« Select request that minimises the seek time
* Generally performs much better than FIFO
* May lead to starvation

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

25

S0

75
100
125
150
175
199




Elevator Algorithm (SCAN)

* Move head in one direction

— Services requests in track order until it reaches the last track,
then reverses direction

« Better than FIFO, usually worse than SSTF
 Avoids starvation

 Makes poor use of sequential reads (on down-scan)
 Less Locality

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

25

50

75
100
125
150
175
199




Modified Elevator (Circular SCAN, C-SCAN)

» Like elevator, but reads sectors in only one direction
— When reaching last track, go back to first track non-stop

» Better locality on sequential reads
« Better use of read ahead cache on controller
 Reduces max delay to read a particular sector

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

25
50
75
100
125
150
175

199



Implementing Stable Storage

ECC
Disk el pisk Disk Disk Disk
1 2 \ 1 2 1 2 1 2 1 2
Z 7
Old Old é Old New Old New % New New
/ 4
Crash Crash Crash Crash Crash

(a) (b) (c) (d) (e)

* Use two disks to implement stable storage

— Problem is when a write (update) corrupts old version,
without completing write of new version

— Solution: Write to one disk first, then write to second after
completion of first

B THE UNIVERSITY OF 22




