
File Management
Tanenbaum, Chapter 4

1

COMP3231

Operating Systems

Outline

• Files and directories from the programmer
(and user) perspective

• Files and directory internals – the
operating system perspective

2

operating system perspective

Files

• Named repository for data

– Potentially large amount of data

• Beyond that available in memory

– File lifetime is independent of process lifetime

3

– File lifetime is independent of process lifetime

– Used to share data between processes

• Convenience

– Input to applications is by means of a file

– Output is saved in a file for long-term storage

File Management

• File management system is considered
part of the operating system
– Manages a trusted, shared resource

– Bridges the gap between:

4

– Bridges the gap between:
• low-level disk organisation (an array of blocks),

• and the programmer’s views (a stream or
collection of records)

• Also includes tools outside the kernel
– E.g. formatting, recovery, defrag, consistency,
and backup utilities.

Objectives for a
File Management System

• Provide a convenient naming
system for files

• Provide uniform I/O support for
a variety of storage device
types

• Optimise performance

• Minimize or eliminate the
potential for lost or destroyed
data

• Provide I/O support and

5

– Same file abstraction for disk,
network, tape6.

• Provide a standardized set of
I/O interface routines
– Storage device drivers

interchangeable

• Ensure that the data in the file
is valid

• Provide I/O support and
access control for multiple
users

• Support system administration
(e.g., backups)

File Names
• File system must provide a convenient naming
scheme
– Textual Names

– May have restrictions
• Only certain characters

– E.g. no ‘/’ characters

6

• Limited length

• Only certain format
– E.g DOS, 8 + 3

– Case (in)sensitive

– Names may obey conventions (.c files or C files)
• Interpreted by tools (UNIX)

• Interpreted by operating system (Windows)

File Naming

7
Typical file extensions.

File Structure

8

• Three kinds of files
– byte sequence

– record sequence

– key-based, tree structured

File Structure
• Stream of Bytes

– OS considers a file to
be unstructured

– Simplifies file
management for the
OS

• Records

– Collection of bytes
treated as a unit
• Example: employee
record

– Operations at the level

9

OS

– Applications can
impose their own
structure

– Used by UNIX,
Windows, most
modern OSes

– Operations at the level
of records (read_rec,
write_rec)

– File is a collection of
similar records

– OS can optimise
operations on records

File Structure

• Tree of Records

– Records of variable length

– Each has an associated key

– Record retrieval based on key

10

– Used on some data processing systems (mainframes)
• Mostly incorporated into modern databases

File Types

• Regular files

• Directories

• Device Files
– May be divided into

• Character Devices – stream of bytes

11

• Block Devices

• Some systems distinguish between regular file types
– ASCII text files, binary files

• At minimum, all systems recognise their own executable
file format
– May use a magic number

File Types

12

(a) An executable file (b) An archive (libxyz.a)

File Access Types
• Sequential access

– read all bytes/records from the beginning

– cannot jump around, could rewind or back up

– convenient when medium was mag tape

• Random access

13

• Random access

– bytes/records read in any order

– essential for data base systems

– read can be 6
• move file pointer (seek), then read or

– lseek(location,6);read(6)

• each read specifies the file pointer
– read(location,6)

File Attributes

14Possible file attributes

Typical File Operations

1.Create

2.Delete

3.Open

7. Append

8. Seek

9.Get

15

4.Close

5.Read

6.Write

attributes

10.Set
Attributes

11.Rename

An Example Program Using File System Calls
(1/2)

16

An Example Program Using File System Calls
(2/2)

17

File Organisation and Access
Programmer’s Perspective

• Given an operating system supporting
unstructured files that are a stream-of-bytes,

how can one organise the contents of the files?

18

File Organisation and Access
Programmer’s Perspective

• Performance
considerations:
– File system performance

affects overall system
performance

• Possible access patterns:
– Read the whole file

– Read individual blocks or
records from a file

– Read blocks or records

19

– Organisation of the file
system on disk affects
performance

– File organisation (data
layout inside file) affects
performance

• indirectly determines
access patterns

preceding or following the
current one

– Retrieve a set of records

– Write a whole file
sequentially

– Insert/delete/update
records in a file

– Update blocks in a file

Classic File Organisations

• There are many ways to organise a file’s
contents, here are just a few basic
methods

– Unstructured Stream (Pile)

20

– Unstructured Stream (Pile)

– Sequential Records

– Indexed Sequential Records

– Direct or Hashed Records

Criteria for File Organization

Things to consider when designing file layout
• Rapid access

– Needed when accessing a single record
– Not needed for batch mode

• read from start to finish

• Ease of update

21

• Ease of update
– File on CD-ROM will not be updated, so this is not a concern

• Economy of storage
– Should be minimum redundancy in the data
– Redundancy can be used to speed access such as an index

• Simple maintenance
• Reliability

Unstructured Stream

• Data are collected in
the order they arrive

• Purpose is to
accumulate a mass of
data and save it

22

data and save it

• Records may have
different fields

• No structure

• Record access is by
exhaustive search

Unstructured Stream Performance

• Update

– Same size record -
okay

– Variable size - poor

23

• Retrieval

– Single record - poor

– Subset – poor

– Exhaustive - okay

The Sequential File

• Fixed format used for
records

• Records are the same
length

• Field names and lengths

24

• Field names and lengths
are attributes of the file

• One field is the key field
– Uniquely identifies the

record

– Records are stored in key
sequence

The Sequential File

• Update

– Same size record -
good

– Variable size – No

25

• Retrieval

– Single record - poor

– Subset – poor

– Exhaustive - okay

Indexed Sequential File

• Index provides a lookup
capability to quickly reach the
vicinity of the desired record
– Contains key field and a pointer

to (location in) the main file

Index

Main
File

26

– Indexed is searched to find
highest key value that is equal
or less than the desired key
value

– Search continues in the main file
at the location indicated by the
pointer

Key

File Ptr

Comparison of sequential and
indexed sequential lookup

• Example: a file contains 1 million records

• On average 500,000 accesses are
required to find a record in a sequential file

• If an index contains 1000 entries, it will

27

• If an index contains 1000 entries, it will
take on average 500 accesses to find the
key, followed by 500 accesses in the main
file. Now on average it is 1000 accesses

Indexed Sequential File

• Update

– Same size record -
good

– Variable size - No
Index

Main
File

28

• Retrieval

– Single record - good

– Subset – poor

– Exhaustive - okay

Key

File Ptr

The Direct, or Hashed File

• Key field required for each
record

• Key maps directly or via a
hash mechanism to an
address within the file HashKey

Hashed
File

29

address within the file

• Directly access a data
record at a the known
address

• Note: File is sparsely
populated

HashKey

The Direct, or Hashed File

• Update

– Same size record - good

– Variable size – No

• Fixed sized records used HashKey

Hashed
File

30

• Fixed sized records used

• Retrieval

– Single record - excellent

– Subset – poor

– Exhaustive - poor

HashKey

File Directories

• Contains information about files

– Attributes

– Location

– Ownership

31

– Ownership

• Directory itself is a file owned by the
operating system

• Provides mapping between file names and
the files themselves

Simple Structure for a Directory
• List of entries, one for each file

• Sequential file with the name of
the file serving as the key

• Provides no help in organising the
files

• Forces user to be careful not to
use the same name for two

32

use the same name for two
different files

• Large number of files inefficient to
manage both from user and
operating system perspective.

Two-level Scheme for a
Directory

• One directory for each user and a master directory

• Master directory contains entry for each user
– Provides access control information

• Each user directory is a simple list of files for that user

• Still provides no help in structuring collections of files

33

• Still provides no help in structuring collections of files

Hierarchical, or Tree-Structured
Directory

• Master directory with user directories
underneath it

• Each user directory may have subdirectories
and files as entries

34

Hierarchical, or Tree-Structured
Directory

• Files can be located by following a path
from the root, or master, directory down
various branches

– This is the absolute pathname for the file

35

– This is the absolute pathname for the file

• Can have several files with the same file
name as long as they have unique path
names

• Directories are generally smaller and thus
more efficient to manage.

36

Current Working Directory

• Always specifying the absolute pathname
for a file is tedious!

• Introduce the idea of a working directory

– Files are referenced relative to the working

37

– Files are referenced relative to the working
directory

• Example: cwd = /home/kevine

.profile = /home/kevine/.profile

Relative and Absolute
Pathnames

• Absolute pathname
– A path specified from the root of the file system to the file

• A Relative pathname
– A pathname specified from the cwd

• Note: ‘.’ (dot) and ‘..’ (dotdot) refer to current and parent

38

• Note: ‘.’ (dot) and ‘..’ (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine

../../etc/passwd

/etc/passwd

../kevine/../.././etc/passwd

Are all the same file

Typical Directory Operations

1. Create

2. Delete

3. Opendir

5. Readdir

6. Rename

7. Link

39

3. Opendir

4. Closedir

7. Link

8. Unlink

Nice properties of UNIX naming

• Simple, regular format

– Names referring to different servers, objects,
etc., have the same syntax.

• Regular tools can be used where specialised tools

40

• Regular tools can be used where specialised tools
would be otherwise be needed.

• Location independent

– Objects can be distributed or migrated, and
continue with the same names.

An example of a bad naming
convention

• From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYS$DISK:[ROB.BIN]CAT_V.EXE;13

41

UCBVAX::SYS$DISK:[ROB.BIN]CAT_V.EXE;13

File Sharing

• In multiuser system, allow files to be
shared among users

• Two issues

– Access rights

42

– Access rights

– Management of simultaneous access

Access Rights

• None

– User may not know of the existence of the file

– User is not allowed to read the user directory
that includes the file

43

that includes the file

• Knowledge

– User can only determine that the file exists
and who its owner is

Access Rights

• Execution

– The user can load and execute a program but
cannot copy it

• Reading

44

• Reading

– The user can read the file for any purpose,
including copying and execution

• Appending

– The user can add data to the file but cannot
modify or delete any of the file’s contents

Access Rights

• Updating
– The user can modify, deleted, and add to the
file’s data. This includes creating the file,
rewriting it, and removing all or part of the
data

45

data

• Changing protection
– User can change access rights granted to
other users

• Deletion
– User can delete the file

Access Rights

• Owners

– Has all rights previously listed

– May grant rights to others using the following
classes of users

46

classes of users

• Specific user

• User groups

• All for public files

Case Study:
UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..

drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup

-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

47

• First letter: file type

d for directories

- for regular files)

• Three user categories

user, group, and other

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..

drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup

-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

48

• Three access rights per category

read, write, and execute

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

drwxrwxrwx
user group

other

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..

drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup

-rw-r----- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

49

• Execute permission for directory?

– Permission to access files in the directory

• To list a directory requires read permissions

• What about drwxr-x—x?

-rw-r----- 1 kevine kevine 1580544 Oct 14 08:13 wk11.ppt

UNIX Access Permissions

• Shortcoming
– The three user categories a rather coarse

• Problematic example
– Joe owns file foo.bar

– Joe wishes to keep his file private

50

– Joe wishes to keep his file private
• Inaccessible to the general public

– Joe wishes to give Bill read and write access

– Joe wishes to give Peter read-only access

– How????????

Simultaneous Access

• Most Oses provide mechanisms for users to
manage concurrent access to files

– Example: lockf(), flock() system calls

• Typically

51

• Typically

– User may lock entire file when it is to be updated

– User may lock the individual records during the
update

• Mutual exclusion and deadlock are issues for
shared access

File Management II
File System Internals

52

File System Internals

COMP3231

Operating Systems

7

6

5

4

3

2

Implementing Files

4

7

File

8 logical
blocks

53

4

3

2

1

0

2

0

1

7

5

6

Disk

???

Trade-off in physical block size

• Sequential Access

– The larger the block size, the fewer I/O operation
required

• Random Access

54

– The larger the block size, the more unrelated data
loaded.

– Spatial locality of access improves the situation

• Choosing the an appropriate block size is a
compromise

Example Block Size Trade-off

55

• Dark line (left hand scale) gives data rate of a disk

• Dotted line (right hand scale) gives disk space efficiency
– All files 2KB (an approximate median file size)

Block size

File System Implementation

56

A possible file system layout

Implementing Files

• The file system must keep track of
– which blocks belong to which files.

– in what order the blocks form the file

– which blocks are free for allocation

• Given a logical region of a file, the file system

57

• Given a logical region of a file, the file system
must identify the corresponding block(s) on disk.
– Stored in file system metadata

• file allocation table (FAT), directory, I-node

• Creating and writing files allocates blocks on
disk
– How?

Allocation Strategies

• Preallocation

– Need the maximum size for the file at the time of
creation

– Difficult to reliably estimate the maximum potential
size of the file

58

size of the file

– Tend to overestimated file size so as not to run out of
space

• Dynamic Allocation

– Allocated in portions as needed

Portion Size
• Extremes

– Portion size = length of file (contiguous allocation)

– Portion size = block size

• Tradeoffs
– Contiguity increases performance for sequential operations

– Many small portions increase the size of the metadata
required to book-keep components of a file, free-space, etc.

59

required to book-keep components of a file, free-space, etc.

– Fixed-sized portions simplify reallocation of space

– Variable-sized portions minimise internal fragmentation
losses

Methods of File Allocation

• Contiguous allocation

– Single set of blocks is allocated to a file at the
time of creation

– Only a single entry in the directory entry

60

– Only a single entry in the directory entry

• Starting block and length of the file

• External fragmentation will occur

directory

61

• Eventually, we will need compaction to
reclaim unusable disk space.

62

directory

63

Methods of File Allocation

• Chained (or linked list) allocation

• Allocation on basis of individual block
– Each block contains a pointer to the next block in the chain

– Only single entry in a directory entry

• Starting block and length of file

64

• Starting block and length of file

• No external fragmentation

• Best for sequential files
– Poor for random access

• No accommodation of the principle of locality
– Blocks end up scattered across the disk due to free list

eventually being randomised

directory

65

