File Management

Tanenbaum, Chapter 4

COMP3231
Operating Systems

T - THE UNIVERSITY OF
NEW SOUTH WALES

Outline

* Files and directories from the programmer
(and user) perspective

* Files and directory internals — the
operating system perspective

BB THE UNIVERSITY OF ?

}-’f"‘:"‘ NEW SOUTH WALES
q P

Files

 Named repository for data

— Potentially large amount of data
* Beyond that available in memory

— File lifetime is independent of process lifetime
— Used to share data between processes

« Convenience
— Input to applications is by means of a file
— Qutput is saved in a file for long-term storage

BL| THE UNIVERSITY OF]

- :?\}ﬁ NEW SOUTH WALES

File Management

* File management system is considered
part of the operating system

— Manages a trusted, shared resource

— Bridges the gap between:
* low-level disk organisation (an array of blocks),

« and the programmer’s views (a stream or
collection of records)

* Also includes tools outside the kernel

— E.g. formatting, recovery, defrag, consistency,
and backup utilities.

THE UNIVERSITY OF 4

@8l NEW SOUTH WALES

Objectives for a
File Management System

* Provide a convenient naming
system for files

* Provide uniform I/O support for
a variety of storage device
types

— Same file abstraction for disk,
network, tape....

* Provide a standardized set of
|/O interface routines

— Storage device drivers
interchangeable

 Ensure that the data in the file
Is valid

Optimise performance

Minimize or eliminate the
potential for lost or destroyed
data

Provide |/O support and
access control for multiple
users

Support system administration
(e.g., backups)

File Names

* File system must provide a convenient naming
scheme

— Textual Names

— May have restrictions

* Only certain characters
— E.g. no /' characters

 Limited length
* Only certain format
- E.gDOS,8+3
— Case (in)sensitive
— Names may obey conventions (.c files or C files)
* Interpreted by tools (UNIX)
* Interpreted by operating system (Windows)

==
-;E THE UNIVERSITY OF
Eesill NEW SOUTH WALES

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Typical file extensions.

: THE UNIVERSITY OF
sl NEW SOUTH WALES

(a)

1 Byte

File Structure

1 Record

|

Ant

Fox Pig

Cat Cow

Dog

Goat

Lion [l Owl

Pony

Rat ']Worm

Hen

Ibis

Lamb

(b)

(c)

* Three kinds of files
— byte sequence
— record sequence
— key-based, tree structured

File Structure

» Stream of Bytes * Records
— OS considers a file to — Collection of bytes
be unstructured treated as a unit
— Simplifies file . Examdple: employee
management for the reeor
0S — Operations at the level
of records (read_rec,

— Applications can
Impose their own
structure

— Used by UNIX,
Windows, most
modern OSes

write_rec)

— File is a collection of
similar records

— OS can optimise
operations on records

BB THE UNIVERSITY OF °

}?’f"“*‘ NEW SOUTH WALES
q P

File Structure

* Tree of Records
— Records of variable length
— Each has an associated key
— Record retrieval based on key

— Used on some data processing systems (mainframes)
* Mostly incorporated into modern databases

? THE UNIVERSITY OF 10
NEW SOUTH WALES

File Types

« Regular files
* Directories

* Device Files

— May be divided into
» Character Devices — stream of bytes
» Block Devices

« Some systems distinguish between regular file types
— ASCII text files, binary files

* At minimum, all systems recognise their own executable
file format
— May use a magic number

==
el] THE UNIVERSITY OF 11
Eesill NEW SOUTH WALES

|<7 Header

(a) An executable file (b) An archive (libxyz.a)

THE UNIVERSITY OF
NEW SOUTH WALES

File Types

Magic number

Text size

Data size

BSS size

Symbol table size

Entry point

Flags

Text

/

Data

Relocation
bits

5

Symbol
table

D)

Module
name
Header
Date
Object Owner
module
Protection
Size
Header
Object
module
Header
Object
module

(@)

(b)

12

File Access Types

« Sequential access
— read all bytes/records from the beginning
— cannot jump around, could rewind or back up
— convenient when medium was mag tape

 Random access
— bytes/records read in any order
— essential for data base systems

— read can be ...
* move file pointer (seek), then read or
— Iseek(location,...);read(...)

» each read specifies the file pointer
— read(location,...)

13

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Possible file attributes

Typical File Operations

1. Create 7. Append

2.Delete 8 Seek

3. Open 9. Get

4.Close attributes

5. Read 10.Set

6. Write Attributes
11.Rename

1=
S THE UNIVERSITY OF
Gl NEW SOUTH WALES

q:
s

An Example Program Using File System Calls
(1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv(])

{

int in_fd, out_fd, rd_count, wt__count;
char buffer[BUF _SIZE];

if (argc = 3) exit(1); /* syntax error if argc is not 3 */

L THE UNIVERSITY OF 16

An Example Program Using File System Calls
(2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd__count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out _fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out _fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(d); /* error on last read */

}

L THE UNIVERSITY OF 17

File Organisation and Access

Programmer's Perspective
« Given an operating system supporting
unstructured files that are a stream-of-bytes,
how can one organise the contents of the files?

)
=1 1 THE UNIVERSITY OF 18
NEW SOUTH WALES

File Organisation and Access
Programmer's Perspective

* Performance « Possible access patterns:
considerations: — Read the whole file

— File system performance — Read individual blocks or
affects overall system records from a file
performance — Read blocks or records

— Organisation of the file preceding or following the
system on disk affects current one
performance — Retrieve a set of records

— File organisation (data — Write a whole file
|ayOUt inside flle) affects Sequentia”y
performance

— Insert/delete/update
 indirectly determines records in a file

access patterns _ _
P — Update blocks in a file

19

Classic File Organisations

* There are many ways to organise a file's
contents, here are just a few basic
methods
— Unstructured Stream (Pile)

— Sequential Records
— Indexed Sequential Records
— Direct or Hashed Records

==
B! THE UNIVERSITY OF
NEW SOUTH WALES

20

Criteria for File Organization

Things to consider when designing file layout

 Rapid access
— Needed when accessing a single record

— Not needed for batch mode
* read from start to finish

Ease of update

— File on CD-ROM will not be updated, so this is not a concern
Economy of storage

— Should be minimum redundancy in the data

— Redundancy can be used to speed access such as an index
Simple maintenance

Reliability

21

Unstructured Stream

 Data are collected In
the order they arrive

 Purpose is to
accumulate a mass of
data and save it

 Records may have

different fields
¢ NO StrUCtU re Variable-leagih meorls
. Varlahle selof felds
* Record access is by Chmeoiogical order
exhaustive search () Pile File

Figure 12.3 Common File Organizations

Unstructured Stream Performance

« Update
— Same size record -
okay
— Variable size - poor
* Retrieval
— Single record - poor
— Subset — poor

. Varahle-lensth ecoris
— Exhaustive - okay i o ey

C e leal order

(a) File File

i
|33

Figure 12.3 Common File Organizations

The Sequential File

 Fixed format used for
records

 Records are the same
length

* Field names and lengths
are attributes of the file

* One field is the key field
— Uniquely identifies the

Fixeddenglh ecorls

reCOFd Fixed st of flelds in Nxed oder
_ Records are stored in key Sequential order based oa key ekl
sequence (b} Secuential File

Figure 12.3 Common File Organizations

The Sequential File

« Update
— Same size record -
good
— Variable size — No
* Retrieval
— Single record - poor
— Subset — poor

Fixeddenglh ecorls

— EXhaUStive B Okay Fixed sl of Mlelds ia Nxed oder

Sequential order based oa k2y Mekd

(b} Sequential File

Figure 12.3 Common File Organizations

Indexed Sequential File

* |Index provides a lookup
capability to quickly reach the
vicinity of the desired record

— Contains key field and a pointer
to (location in) the main file

— Indexed is searched to find
highest key value that is equal
or less than the desired key
value

— Search continues in the main file
at the location indicated by the
pointer

Index

A 4

A 4

Z /
Key P//

File Ptr

A 4

A 4

A 4

A 4

26

Main
File

Comparison of sequential and

iIndexed sequential lookup

« Example: a file contains 1 million records

* On average 500,000 accesses are
required to find a record in a sequential file

 |f an index contains 1000 entries, it will
take on average 500 accesses to find the
key, followed by 500 accesses in the main
file. Now on average itis 1000 accesses

==
] THE UNIVERSITY OF 27
NEW SOUTH WALES

Indexed Sequential File

« Update Fio
— Same size record - >
gOOd Index
— Variable size - No |
* Retrieval
— Single record - good " /]
— Subset — poor File Ptr
— Exhaustive - okay

L THE UNIVERSITY OF 28

The Direct, or Hashed File

« Key field required for each
record

« Key maps directly or via a
hash mechanism to an
address within the file

* Directly access a data
record at a the known
address

* Note: File is sparsely
populated

B
Rl THE UNIVERSITY OF
NEW SOUTH WALES

Key —

Hash

, L “ |

Hashed
File

9

The Direct, or Hashed File

« Update
— Same size record - good
— Variable size — No
 Fixed sized records used
* Retrieval
— Single record - excellent
— Subset — poor
— Exhaustive - poor

Key —*

Hash

Hashed
File

File Directories

» Contains information about files
— Attributes
— Location
— Ownership

 Directory itself is a file owned by the
operating system

* Provides mapping between file names and
the files themselves

B
L THE UNIVERSITY OF 31
S| NEW SOUTH WALES

Simple Structure for a Directory

* List of entries, one for each file

» Sequential file with the name of
the file serving as the key

* Provides no help in organising the
files

 Forces user to be careful not to
use the same name for two
different files

« Large number of files inefficient to
manage both from user and . Root directory

operating system perspective.

B! THE UNIVERSITY OF 32

Two-level Scheme for a
Directory

One directory for each user and a master directory

Master directory contains entry for each user
— Provides access control information

Each user directory is a simple list of files for that user
Still provides no help in structuring collections of files

--I—Root directory

User
directory

33

Hierarchical, or Tree-Structured
Directory

* Master directory with user directories
underneath it

« Each user directory may have subdirectories
and files as entries

——Root directory

User /|\
directory_ |

=

== THE UNIVERSITY OF User subdirectories
%l NEW SOUTH WALES

(©) () (¢) (C) = useriile

Hierarchical, or Tree-Structured

Directory

* Files can be located by following a path
from the root, or master, directory down
various branches

— This is the absolute pathname for the file

 Can have several files with the same file
name as long as they have unique path
names

* Directories are generally smaller and thus
__more efficient to manage.

T E THE UNIVERSITY OF 35
NEW SOUTH WALES

bin

etc

bin

~— Root directory

etc

lib

usr

tmp

|

lib

usr ‘[mp

ast

jim

lib

ast

lib jim

. —~— /usr/jim
dict.

36

fci

Current Working Directory

* Always specifying the absolute pathname
for a file is tedious!

* Introduce the idea of a working directory

— Files are referenced relative to the working
directory

« Example: cwd = /home/kevine
.profile = /home/kevine/.profile

T E THE UNIVERSITY OF 37

NEW SOUTH WALES

Relative and Absolute
Pathnames

* Absolute pathname
— A path specified from the root of the file system to the file

* A Relative pathname
— A pathname specified from the cwd

* Note: '." (dot) and ‘.." (dotdot) refer to current and parent
directory

Example: cwd = /home/kevine
../../etc/passwd

/etc/passwd
../kevine/../.././etc/passwd
Are all the same file

B s
W[

38

Typical Directory Operations

1. Create 5. Readdir
2. Delete 6. Rename
3. Opendir 7. Link

4. Closedir 8. Unlink

IVERSITY OF 39
LES

Nice properties of UNIX naming

* Simple, regular format
— Names referring to different servers, objects,

etc., have the same syntax.

» Regular tools can be used where specialised tools
would be otherwise be needed.

* Location independent

— Objects can be distributed or migrated, and
continue with the same names.

==
Rl THE UNIVERSITY OF 40
NEW SOUTH WALES

An example of a bad naming

convention

 From, Rob Pike and Peter Weinberger,
“The Hideous Name”, Bell Labs TR

UCBVAX::SYSSDISK:[ROB.BIN]JCAT_V.EXE;13

B THE UNIVERSITY OF 41
NEW SOUTH WALES

File Sharing

* In multiuser system, allow files to be
shared among users
 Two issues

— Access rights
— Management of simultaneous access

42

Access Rights

* None
— User may not know of the existence of the file

— User is not allowed to read the user directory
that includes the file

 Knowledge

— User can only determine that the file exists
and who its owner is

==
LRl] THE UNIVERSITY OF 43
NEW SOUTH WALES

Access Rights

 Execution

— The user can load and execute a program but
cannot copy it

» Reading

— The user can read the file for any purpose,
iIncluding copying and execution

* Appending

— The user can add data to the file but cannot
modify or delete any of the file’s contents

S THE UNIVERSITY OF 44

}::; NEW SOUTH WALES

Access Rights

» Updating
— The user can modify, deleted, and add to the
file’s data. This includes creating the file,

rewriting it, and removing all or part of the
data

» Changing protection

— User can change access rights granted to
other users

 Deletion
— User can delete the file

B
L THE UNIVERSITY OF 45

}::; NEW SOUTH WALES

Access Rights

 Owners
— Has all rights previously listed
— May grant rights to others using the following
classes of users
» Specific user
« User groups
« All for public files

] THE UNIVERSITY OF 46
NEW SOUTH WALES

Case Study:
UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
-rw-r—---—- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
-rw-r—---—- kevine kevine 1580544 Oct 14 08:13 wkll.ppt

* First Ietter file type
d for directories
- for reqgular files)

* Three user categories
user, group, and other

L THE UNIVERSITY OF 47

UNIX Access Permissions

total 1704

drwxr-x--- 3 kevine kevine 4096 Oct 14 08:13 .
drwxr-x--- 3 kevine kevine 4096 Oct 14 08:14 ..
drwxr-x--- 2 kevine kevine 4096 Oct 14 08:12 backup
-rw-r—---—- 1 kevine kevine 141133 Oct 14 08:13 eniac3.jpg
-rw-r—---—- 1 kevine kevine 1580544 Oct 14 08:13 wkll.ppt

* Three access rights per category
read, write, and execute

ArwXrwxXrwx

user aroup other

L THE UNIVERSITY OF 48

total 1704
drwxr-x---
drwxr-x---
drwxr-x---
-rw-r-----

—rw-r-—----

* Execute permission for directory?

UNIX Access Permissions

P PPN W W

kevine
kevine
kevine
kevine

kevine

kevine
kevine
kevine
kevine

kevine

4096
4096
4096
141133
1580544

Oct
Oct
Oct
Oct
Oct

14
14
14
14
14

08:
08:
08:

08

13 .
14 ..
12 backup

:13 eniac3. jpg
08:

13 wkll.ppt

— Permission to access files in the directory
* To list a directory requires read permissions
 \What about drwxr-x—x7?

- THE UNIVERSITY OF
NEW SOUTH WALES

49

UNIX Access Permissions

« Shortcoming
— The three user categories a rather coarse

* Problematic example
— Joe owns file foo.bar

— Joe wishes to keep his file private
* |naccessible to the general public

— Joe wishes to give Bill read and write access
— Joe wishes to give Peter read-only access

- THE UNIVERSITY OF
NEW SOUTH WALES

50

Simultaneous Access

* Most Oses provide mechanisms for users to
manage concurrent access to files

— Example: lockf(), flock() system calls
* Typically
— User may lock entire file when it is to be updated

— User may lock the individual records during the
update

« Mutual exclusion and deadlock are issues for
shared access

FL| THE UNIVERSITY OF 51

File Management l|
File System Internals

COMP3231
Operating Systems

- THE UNIVERSITY OF
NEW SOUTH WALES

52

Implementing Files

File /
8 logical 0 > =
blocks 2
4 2 V4
3
2 0)
1
0 1 6
Disk
-Eﬂ- THE UNIVERSITY OF 33

NEW SOUTH WALES

Trade-off in physical block size

« Sequential Access
— The larger the block size, the fewer I/O operation
required
 Random Access

— The larger the block size, the more unrelated data
loaded.

— Spatial locality of access improves the situation

« Choosing the an appropriate block size is a
compromise

- THE UNIVERSITY OF 54
NEW SOUTH WALES

Example Block Size Trade-off

1000 ————————r—— —— — — —8 — 1000
Disk space utilization \\

cC

o 800 — 80 8
Q ©
v N
0 =
X 600 - —4 60 S
2 3
o o
o 400 |- — 40 2
0 r
200 |- - 20 ©

Data rate Se
0 Py | I | | | 0
0 128 256 512 1K 2K 4K 8K 16K O

Block size
Dark line (left hand scale) gives data rate of a disk

Dotted line (right hand scale) gives disk space efficiency
— All files 2KB (an approximate median file size)

95

(percent)

File System Implementation

Partition table

|

/

Entire disk

Disk partition

b~

\

MBR

/

Boot block

Super block

Free space mgmt

|-nodes

Root dir

Files and directories

A possible file system layout

56

Implementing Files

* The file system must keep track of
— which blocks belong to which files.
— in what order the blocks form the file
— which blocks are free for allocation

* Given a logical region of a file, the file system
must identify the corresponding block(s) on disk.

— Stored in file system metadata
* file allocation table (FAT), directory, |I-node

« Creating and writing files allocates blocks on
disk

— How?

RS THE UNIVERSITY OF >

Bt LN
it NEW SOUTH WALES

Allocation Strategies

 Preallocation

— Need the maximum size for the file at the time of
creation

— Difficult to reliably estimate the maximum potential
size of the file

— Tend to overestimated file size so as not to run out of
space

* Dynamic Allocation
— Allocated in portions as needed

] THE UNIVERSITY OF 58
NEW SOUTH WALES

Portion Size

Extremes
— Portion size = length of file (contiguous allocation)
— Portion size = block size

Tradeoffs

— Contiguity increases performance for sequential operations
— Many small portions increase the size of the metadata

required to book-keep components of a file, free-space, etc.

— Fixed-sized portions simplify reallocation of space

— Variable-sized portions minimise internal fragmentation
losses

59

Methods of File Allocation

« Contiguous allocation

— Single set of blocks is allocated to a file at the
time of creation

— Only a single entry in the directory entry
 Starting block and length of the file

» External fragmentation will occur

==
Rl THE UNIVERSITY OF 60
NEW SOUTH WALES

- directory

File A File Name Sart Block Length
o] o] R R S File A 2 3
Fik B 9 3
File 18 A
OO O-m| | 5
o o o e | LeE %

s e[| s s

Fih- C

WA 1G] bz M 14

File l-'.'

s el J27l Al J2e[|

File I»
fZR R =[] [[
N"'--..____________..--""'

Figure 12.7 Contiguous File Allocation

¢ | NEVW SUUIH WALEDS

« Eventually, we will need compaction to
reclaim unusable disk space.

BL| THE UNIVERSITY OF

- :?\}ﬁ NEW SOUTH WALES

directory

File A File Name Start Block Length
oy IR RSN o 4 File A 0 3
Fik B File I 3 3
File % #
0 B A | | ke 3
File File I 16 3

i ufd vl vua s

Fike E File I}

15657 16 R T)

208 21 22

| 26 27

| 31

Figure 12.8 Contiguous File Allocation (After Compaction

INIVLRNOLL T I

NEW SOUTH WALES

Methods of File Allocation

« Chained (or linked list) allocation

» Allocation on basis of individual block
— Each block contains a pointer to the next block in the chain
— Only single entry in a directory entry
» Starting block and length of file

* No external fragmentation

» Best for sequential files
— Poor for random access

 No accommodation of the principle of locality

— Blocks end up scattered across the disk due to free list
eventually being randomised

Ll THE UNIVERSITY OF 64
NEW SOUTH WALES

directory

File Name Start Block Lenpth

File I | -

Figure 12.9 Chained Allocation

BB NEW SOUTH WALES

