
Processes and Threads

Implementation

1

Learning Outcomes

• An understanding of the typical implementation

strategies of processes and threads

– Including an appreciation of the trade-offs between

the implementation approaches

• Kernel-threads versus user-level threads

2

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”

Summary: The Process Model

3

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential

processes (with a single thread each)

• Only one program active at any instant

Processes

User Mode

Scheduler
Kernel Mode

Process A Process B Process C

Processes

• User-mode

– Processes (programs) scheduled by the kernel

– Isolated from each other

– No concurrency issues between each other

• System-calls transition into and return from the kernel• System-calls transition into and return from the kernel

• Kernel-mode

– Nearly all activities still associated with a process

– Kernel memory shared between all processes

– Concurrency issues exist between processes concurrently

executing in a system call

5

Threads
The Thread Model

6

(a) Three processes each with one thread

(b) One process with three threads

The Thread Model

7

• Items shared by all threads in a process

• Items private to each thread

The Thread Model

8

Each thread has its own stack

Implementing Threads in User

Space

9

A user-level threads package

User-level Threads

Scheduler

User Mode

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

Process A Process B Process C

User-level Threads
• Implementation at user-level

– User-level Thread Control Block (TCB), ready

queue, blocked queue, and dispatcher

– Kernel has no knowledge of the threads (it

only sees a single process)

11

only sees a single process)

– If a thread blocks waiting for a resource held

by another thread, its state is saved and the

dispatcher switches to another ready thread

– Thread management (create, exit, yield, wait)

are implemented in a runtime support library

User-Level Threads

• Pros
– Thread management and switching at user level is much faster
than doing it in kernel level

• No need to trap (take syscall exception) into kernel and back to
switch

– Dispatcher algorithm can be tuned to the application

12

– Dispatcher algorithm can be tuned to the application

• E.g. use priorities

– Can be implemented on any OS (thread or non-thread aware)

– Can easily support massive numbers of threads on a per-
application basis

• Use normal application virtual memory

• Kernel memory more constrained. Difficult to efficiently support
wildly differing numbers of threads for different applications.

User-level Threads
• Cons

– Threads have to yield() manually (no timer
interrupt delivery to user-level)
• Co-operative multithreading

– A single poorly design/implemented thread can
monopolise the available CPU time

13

monopolise the available CPU time

• There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

– Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

User-Level Threads

• Cons
– If a thread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks

• Can’t overlap I/O with computation

• Can use wrappers as a work around
– Example: wrap the read() call

14

– Example: wrap the read() call

– Use select() to test if read system call would block

» select() then read()

» Only call read() if it won’t block

» Otherwise schedule another thread

– Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking
system calls – exactly when efficiency matters!

• Can change to kernel to support non-blocking system call

– Lose “on any system” advantage, page faults still a problem.

Implementing Threads in the Kernel

15

A threads package managed by the kernel

Kernel-Level Threads

User Mode

Scheduler
Kernel Mode

Process A Process B Process C

Kernel Threads

• Threads are implemented in the kernel

– TCBs are stored in the kernel

• A subset of information in a traditional PCB

– The subset related to execution context

17

– The subset related to execution context

• TCBs have a PCB associated with them

– Resources associated with the group of threads (the

process)

– Thread management calls are implemented

as system calls

• E.g. create, wait, exit

Kernel Threads

• Cons

– Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.
• More expensive than user-level equivalent

18

• More expensive than user-level equivalent

• Pros

– Preemptive multithreading

– Parallelism
• Can overlap blocking I/O with computation

• Can take advantage of a multiprocessor

Multiprogramming Implementation

19

Skeleton of what lowest level of OS does when an
interrupt occurs – a thread/context switch

Thread Switch
• A switch between threads can happen any time
the OS is invoked
– On a system call

• Mandatory if system call blocks or on exit();

– On an exception
• Mandatory if offender is killed

20

• Mandatory if offender is killed

– On an interrupt
• Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

Context Switch

• Thread switch must be transparent for threads

– When dispatched again, thread should not notice that

something else was running in the meantime (except

for elapsed time)

⇒OS must save all state that affects the thread

21

⇒OS must save all state that affects the thread

• This state is called the thread context

• Switching between threads consequently results

in a context switch.

Simplified

Explicit

Thread Switch
thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

Thread a Thread b

22

thread_switch(a,b)

{

}

Kernel-Level Threads

User Mode

Scheduler
Kernel Mode

Process A Process B Process C

Example Context Switch

• Running in user mode, SP points to user-
level stack (not shown on slide)

Representation of

24

SP

Representation of

Kernel Stack

(Memory)

Example Context Switch

• Take an exception, syscall, or interrupt,
and we switch to the kernel stack

25

SP

Example Context Switch

• We push a trapframe on the stack

– Also called exception frame, user-level context�.

– Includes the user-level PC and SP

26

SP

trapframe

Example Context Switch

• Call ‘C’ code to process syscall, exception,

or interrupt

– Results in a ‘C’ activation stack building up

27

SP

trapframe‘C’ activation stack

Example Context Switch

• The kernel decides to perform a context switch

– It chooses a target thread (or process)

– It pushes remaining kernel context onto the stack

28

SP

trapframe‘C’ activation stackKernel State

Example Context Switch

• Any other existing thread must
– be in kernel mode (on a uni processor),

– and have a similar stack layout to the stack we are
currently using

29

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel stacks of other

threads/processes

Example Context Switch

• We save the current SP in the PCB (or TCB),

and load the SP of the target thread.

– Thus we have switched contexts

30

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Example Context Switch

• Load the target thread’s previous context,

and return to C

31

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State

Example Context Switch

• The C continues and (in this example)

returns to user mode.

32

SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State

Example Context Switch

• The user-level context is restored

33

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Example Context Switch

• The user-level SP is restored

34

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

The Interesting Part of a Thread

Switch
• What does the “push kernel state” part

do???

35

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

OS/161 md_switch
md_switch(struct pcb *old, struct pcb *nu)

{

if (old==nu) {

return;

}

/*

* Note: we don't need to switch curspl, because splhigh()

* should always be in effect when we get here and when we

* leave here.

36

* leave here.

*/

old->pcb_kstack = curkstack;

old->pcb_ininterrupt = in_interrupt;

curkstack = nu->pcb_kstack;

in_interrupt = nu->pcb_ininterrupt;

mips_switch(old, nu);

}

OS/161 mips_switch

mips_switch:

/*

* a0 contains a pointer to the old thread's struct pcb.

* a1 contains a pointer to the new thread's struct pcb.

*

* The only thing we touch in the pcb is the first word, which

* we save the stack pointer in. The other registers get saved

* on the stack, namely:

37

* on the stack, namely:

*

* s0-s8

* gp, ra

*

* The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

OS/161 mips_switch

/* Save the registers */

sw ra, 40(sp)

sw gp, 36(sp)

sw s8, 32(sp)

sw s7, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

Save the registers

that the ‘C’

procedure calling

convention

expects

38

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */

sw sp, 0(a0)

expects

preserved

OS/161 mips_switch

/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

39

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s7, 28(sp)

lw s8, 32(sp)

lw gp, 36(sp)

lw ra, 40(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */

.end mips_switch

Revisiting

Thread Switchmips_switch(a,b)

{

mips_switch(b,a)

{

}

}

Thread a Thread b

40

mips_switch(a,b)

{

}

