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Learning Outcomes

* An understanding of the typical implementation
strategies of processes and threads

— Including an appreciation of the trade-offs between
the implementation approaches
« Kernel-threads versus user-level threads

* A detailed understanding of “context switching”




Summary: The Process Model
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* Multiprogramming of four programs

* Conceptual model of 4 independent, sequential
processes (with a single thread each)

* Only one program active at any instant
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Processes

« User-mode
— Processes (programs) scheduled by the kernel
— Isolated from each other
— No concurrency issues between each other

« System-calls transition into and return from the kernel

« Kernel-mode
— Nearly all activities still associated with a process
— Kernel memory shared between all processes

— Concurrency issues exist between processes concurrently
executing in a system call
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Threads
The Thread Model
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(a) Three processes each with one thread




The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

 [tems shared by all threads in a process
 Items private to each thread




The Thread Model
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Each thread has its own stack




Implementing Threads in User
Space

Process Thread

\_/

[T\

=3 (5

=
Kernel{ / ” I
space erne
i X
/ \
Run-time Thread Process
system table table
A user-level threads package
_==_ THE UNIVERSITY OF 9

NEW SOUTH WALES



User-level Threads
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User-level Threads

* Implementation at user-level

— User-level Thread Control Block (TCB), ready
gueue, blocked queue, and dispatcher

— Kernel has no knowledge of the threads (it
only sees a single process)

— If a thread blocks waiting for a resource held
by another thread, its state is saved and the
dispatcher switches to another ready thread

— Thread management (create, exit, yield, wait)
are implemented in a runtime support library
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User-Level Threads

* Pros
— Thread management and switching at user level is much faster
than doing it in kernel level

* No need to trap (take syscall exception) into kernel and back to
switch

— Dispatcher algorithm can be tuned to the application
* E.g. use priorities
— Can be implemented on any OS (thread or non-thread aware)
— Can easily support massive numbers of threads on a per-
application basis
« Use normal application virtual memory

» Kernel memory more constrained. Difficult to efficiently support
wildly differing numbers of threads for different applications.
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User-level Threads

e Cons

— Threads have to yield() manually (no timer
interrupt delivery to user-level)

» Co-operative multithreading

— A single poorly design/implemented thread can
monopolise the available CPU time

* There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

— Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)
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User-Level Threads

e Cons

— |If a thread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks

« Can’t overlap I/O with computation

» Can use wrappers as a work around
— Example: wrap the read () call
— Use select () to test if read system call would block
» select () then read ()
» Only call read () if it won'’t block
» Otherwise schedule another thread
— Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking
system calls — exactly when efficiency matters!

« Can change to kernel to support non-blocking system call
— Lose “on any system” advantage, page faults still a problem.
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Implementing Threads in the Kernel

Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel
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Kernel-Level Threads
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Kernel Threads

* Threads are implemented in the kernel

— TCBs are stored in the kernel

* A subset of information in a traditional PCB
— The subset related to execution context

« TCBs have a PCB associated with them

— Resources associated with the group of threads (the
process)

— Thread management calls are implemented
as system calls
* E.g. create, wait, exit
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Kernel Threads

e Cons

— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

* More expensive than user-level equivalent
* Pros
— Preemptive multithreading

— Parallelism
« Can overlap blocking I/O with computation
« Can take advantage of a multiprocessor
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Multiprogramming Implementation

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

/. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
interrupt occurs — a thread/context switch
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Thread Switch

* A switch between threads can happen any time
the OS is invoked

— On a system call
« Mandatory if system call blocks or on exit();

— On an exception
« Mandatory if offender is killed

— On an interrupt

 Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
Instructions

Note instructions do not equal program statements
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Context Switch

* Thread switch must be transparent for threads

— When dispatched again, thread should not notice that
something else was running in the meantime (except
for elapsed time)

—0S must save all state that affects the thread
 This state Is called the thread context

« Switching between threads consequently results
In a context switch.
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Thread a Thread b | Simplified
Explicit
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Kernel-Level Threads
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Example Context Switch

* Running in user mode, SP points to user-
level stack (not shown on slide)

Representation of
Kernel Stack SP
(Memory)
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Example Context Switch

« Take an exception, syscall, or interrupt,
SP

and we switch to the kernel stack
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Example Context Switch

 We push a trapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

SP

/

|
S
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Example Context Switch

» Call ‘C’ code to process syscall, exception,
or interrupt

— Results in a ‘C’ activation stack building up

/

_‘C’ activation stack| trapframe

SP

B
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Example Context Switch

* The kernel decides to perform a context switch
— It chooses a target thread (or process)
— It pushes remaining kernel context onto the stack

SP

| |kemel State|'C’ activation stack] _trapframe
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Example Context Switch

* Any other existing thread must
— be in kernel mode (on a uni processor),

— and have a similar stack layout to the stack we are
currently using

SP

Kernel stacks of other
threads/processes

| |kemel State|'C’ activation stack] _trapframe

‘C’ activation stack| trapframe

‘C’ activation stack| trapframe
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Example Context Switch

» We save the current SP in the PCB (or TCB),
and load the SP of the target thread.

— Thus we have switched contexts

SP

| |Kernel State|'C’ activation stack| trapframe

-K/ernel State|'C’ activation stack| trapframe

_ | |Kernel State|'C’ activation stack| trapframe
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Example Context Switch

» Load the target thread’s previous context,
and return to C

SP
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Example Context Switch

* The C continues and (in this example)
returns to user mode.

SP

LR THE UNIVERSITY OF 32
‘ NEW SOUTH WALES




Example Context Switch

* The user-level context is restored

SP
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Example Context Switch

 The user-level SP is restored

SP
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The Interesting Part of a Thread

Switch

* What does the “push kernel state” part
do???

SP
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0S/161 md switch

md switch(struct pcb *old, struct pcb *nu)
{
if (old==nu) {
return;
}
/*
* Note: we don't need to switch curspl, because splhigh(()
* should always be in effect when we get here and when we
* leave here.

*/

old->pcb_kstack = curkstack;
old->pcb _ininterrupt = in interrupt;

curkstack = nu->pcb kstack;
in _interrupt = nu->pcb ininterrupt;

mips switch(old, nu);




0S/161 mips switch

mips switch:

/
a0 contains a pointer to the old thread's struct pcb.
al contains a pointer to the new thread's struct pcb.

The only thing we touch in the pcb is the first word, which
we save the stack pointer in. The other registers get saved
on the stack, namely:

s0-s8
gp, ra

* % ok ok o ok ok * * o*|

The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */
addi sp, sp, -44

B
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|
S

/* Save the registers */

SW
SW
SW
SW
SW
SW
SW
SW
SW
SW

SW

/*

SW

ra,
1) S
s8,
s7,
s6,
s5,
s4,
s3,
s2,
sl,
s0,

Store
Sp,

0S/161 mips switch

40 (sp)
36 (sp)
32 (sp)
28 (sp)
24 (sp)
20 (sp)
16 (sp)
12 (sp)
8 (sp)

4 (sp)

0 (sp)

the old stack pointer in the old pcb */
0 (ao0)

L] THE UNIVERSITY OF
NEW SOUTH WALES

38



0S/161 mips switch

/* Get the new stack pointer from the new pcb */
1w sp, 0O(al)
nop /* delay slot for load */

/* Now, restore the registers */

1w sO0, O(sp)
1w sl, 4(sp)
1w s2, 8(sp)
1w s3, 12(sp)
1w s4, 16(sp)
1w s5, 20(sp)
1w s6, 24 (sp)
1w s7, 28(sp)
1w s8, 32(sp)
1w gp, 36(sp)
1w ra, 40(sp)
nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */
.end mips_switch
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Thread a Threadb | Revisiting
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