Processes and Threads
Implementation

- THE UNIVERSITY OF
NEW SOUTH WALES

Learning Outcomes

* An understanding of the typical implementation
strategies of processes and threads

— Including an appreciation of the trade-offs between
the implementation approaches
« Kernel-threads versus user-level threads

* A detailed understanding of “context switching”

Summary: The Process Model

One program counter
N— Four program counters

A Process
E switch

I TANN
q

C A# B Y cl DY

Process

> w O O
I
I

J Y

D Time —=

(a) (b) (c)

* Multiprogramming of four programs

* Conceptual model of 4 independent, sequential
processes (with a single thread each)

* Only one program active at any instant

Processes

User Mode

-

k Process A

~

— Kernel Mode

4)

\ Procesg B j

l

[Scheduler]

Process C /

=1 e T
sl NEW SOUTH WALES

Processes

« User-mode
— Processes (programs) scheduled by the kernel
— Isolated from each other
— No concurrency issues between each other

« System-calls transition into and return from the kernel

« Kernel-mode
— Nearly all activities still associated with a process
— Kernel memory shared between all processes

— Concurrency issues exist between processes concurrently
executing in a system call

Rl THE UNIVERSITY OF
@il NEW SOUTH WALES

Threads
The Thread Model

Process 1 Process 1 Process 1 Process
\\ | | i
User y
space
Thread Thread
Kernel
space Kernel Kernel
(a) (b)

(a) Three processes each with one thread

The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

 [tems shared by all threads in a process
 Items private to each thread

The Thread Model

Thread 2
Thread | Thfead 2
// Process
Thread 1's H - Thread 3's stack
stack
Kernel

Each thread has its own stack

Implementing Threads in User
Space

Process Thread

_/

[T\

=3 (5

=
Kernel{ / ” I
space erne
i X
/ \
Run-time Thread Process
system table table
A user-level threads package
== THE UNIVERSITY OF 9

NEW SOUTH WALES

User-level Threads

User Mode
/l\’) o ! ’
(' Scheduler) (Scheduler) (Scheduler]
k Process \ Proce!B j rocess C /
[Scheduler]

— Kernel Mode

=1 e T
sl NEW SOUTH WALES

User-level Threads

* Implementation at user-level

— User-level Thread Control Block (TCB), ready
gueue, blocked queue, and dispatcher

— Kernel has no knowledge of the threads (it
only sees a single process)

— If a thread blocks waiting for a resource held
by another thread, its state is saved and the
dispatcher switches to another ready thread

— Thread management (create, exit, yield, wait)
are implemented in a runtime support library

=
R THE UNIVERSITY OF h

}':\,; NEW SOUTH WALES

User-Level Threads

* Pros
— Thread management and switching at user level is much faster
than doing it in kernel level

* No need to trap (take syscall exception) into kernel and back to
switch

— Dispatcher algorithm can be tuned to the application
* E.g. use priorities
— Can be implemented on any OS (thread or non-thread aware)
— Can easily support massive numbers of threads on a per-
application basis
« Use normal application virtual memory

» Kernel memory more constrained. Difficult to efficiently support
wildly differing numbers of threads for different applications.

L] THE UNIVERSITY OF 12
NEW SOUTH WALES

User-level Threads

e Cons

— Threads have to yield() manually (no timer
interrupt delivery to user-level)

» Co-operative multithreading

— A single poorly design/implemented thread can
monopolise the available CPU time

* There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

— Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

FL| THE UNIVERSITY OF 13

User-Level Threads

e Cons

— |If a thread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks

« Can’t overlap I/O with computation

» Can use wrappers as a work around
— Example: wrap the read () call
— Use select () to test if read system call would block
» select () then read ()
» Only call read () if it won'’t block
» Otherwise schedule another thread
— Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking
system calls — exactly when efficiency matters!

« Can change to kernel to support non-blocking system call
— Lose “on any system” advantage, page faults still a problem.

= THE UNIVERSITY OF 14
B NEW SOUTH WALES

Implementing Threads in the Kernel

Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel

-- THE UNIVERSITY OF 15
NEW SOUTH WALES

Kernel-Level Threads

User Mode

k Proc

— Kernel Mode

} Scheduler]

K Procesg B j

l

-

\

i | e r
iesll NEW SOUTH WALES

Kernel Threads

* Threads are implemented in the kernel

— TCBs are stored in the kernel

* A subset of information in a traditional PCB
— The subset related to execution context

« TCBs have a PCB associated with them

— Resources associated with the group of threads (the
process)

— Thread management calls are implemented
as system calls
* E.g. create, wait, exit

THE UNIVERSITY OF

@8l NEW SOUTH WALES

Kernel Threads

e Cons

— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

* More expensive than user-level equivalent
* Pros
— Preemptive multithreading

— Parallelism
« Can overlap blocking I/O with computation
« Can take advantage of a multiprocessor

FL| THE UNIVERSITY OF 18

Multiprogramming Implementation

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

/. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
interrupt occurs — a thread/context switch

- THE UNIVERSITY OF 19
NEW SOUTH WALES

Thread Switch

* A switch between threads can happen any time
the OS is invoked

— On a system call
« Mandatory if system call blocks or on exit();

— On an exception
« Mandatory if offender is killed

— On an interrupt

 Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
Instructions

Note instructions do not equal program statements

20

Context Switch

* Thread switch must be transparent for threads

— When dispatched again, thread should not notice that
something else was running in the meantime (except
for elapsed time)

—0S must save all state that affects the thread
 This state Is called the thread context

« Switching between threads consequently results
In a context switch.

RS THE UNIVERSITY OF 21

Bt LN
it NEW SOUTH WALES

Thread a Thread b | Simplified
Explicit

threld_switch(a,b) > } .
. [hread Switch
:
|
! i
} : < thread switch(b,a)
¢
|
|
|
|
|
|
|
|
|
thread switch(a,b) > } :
¢
|
|
|
|
|
|
|
|
|
- “- THE UNIVERSITY OF 22

Kernel-Level Threads

User Mode

k Proc

— Kernel Mode

} Scheduler]

K Procesg B j

l

-

\

i | e r
iesll NEW SOUTH WALES

Example Context Switch

* Running in user mode, SP points to user-
level stack (not shown on slide)

Representation of
Kernel Stack SP
(Memory)

FL| THE UNIVERSITY OF 24

Example Context Switch

« Take an exception, syscall, or interrupt,
SP

and we switch to the kernel stack

| THE UNIVERSITY OF o5
P NEW SOUTH WALES

Example Context Switch

 We push a trapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

SP

/

|
S

- THE UNIVERSITY OF 26

Example Context Switch

» Call ‘C’ code to process syscall, exception,
or interrupt

— Results in a ‘C’ activation stack building up

/

_‘C’ activation stack| trapframe

SP

B
¢! THE UNIVERSITY OF 27
NEW SOUTH WALES

Example Context Switch

* The kernel decides to perform a context switch
— It chooses a target thread (or process)
— It pushes remaining kernel context onto the stack

SP

| |kemel State|'C’ activation stack] _trapframe

] B THE UNIVERSITY OF 28

Example Context Switch

* Any other existing thread must
— be in kernel mode (on a uni processor),

— and have a similar stack layout to the stack we are
currently using

SP

Kernel stacks of other
threads/processes

| |kemel State|'C’ activation stack] _trapframe

‘C’ activation stack| trapframe

‘C’ activation stack| trapframe

29

Example Context Switch

» We save the current SP in the PCB (or TCB),
and load the SP of the target thread.

— Thus we have switched contexts

SP

| |Kernel State|'C’ activation stack| trapframe

-K/ernel State|'C’ activation stack| trapframe

_ | |Kernel State|'C’ activation stack| trapframe

s - THE UNIVERSITY OF 30
NEW SOUTH WALES

Example Context Switch

» Load the target thread’s previous context,
and return to C

SP

LR THE UNIVERSITY OF 31

NEW SOUTH WALES

Example Context Switch

* The C continues and (in this example)
returns to user mode.

SP

LR THE UNIVERSITY OF 32
‘ NEW SOUTH WALES

Example Context Switch

* The user-level context is restored

SP

LR THE UNIVERSITY OF 33
‘ NEW SOUTH WALES

Example Context Switch

 The user-level SP is restored

SP

LR THE UNIVERSITY OF 34
‘ NEW SOUTH WALES

The Interesting Part of a Thread

Switch

* What does the “push kernel state” part
do???

SP

L] THE UNIVERSITY OF 35
NEW SOUTH WALES

0S/161 md switch

md switch(struct pcb *old, struct pcb *nu)
{
if (old==nu) {
return;
}
/*
* Note: we don't need to switch curspl, because splhigh(()
* should always be in effect when we get here and when we
* leave here.

*/

old->pcb_kstack = curkstack;
old->pcb _ininterrupt = in interrupt;

curkstack = nu->pcb kstack;
in _interrupt = nu->pcb ininterrupt;

mips switch(old, nu);

0S/161 mips switch

mips switch:

/
a0 contains a pointer to the old thread's struct pcb.
al contains a pointer to the new thread's struct pcb.

The only thing we touch in the pcb is the first word, which
we save the stack pointer in. The other registers get saved
on the stack, namely:

s0-s8
gp, ra

* % ok ok o ok ok * * o*|

The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */
addi sp, sp, -44

B
=i THE UNIVERSITY OF 37
NEW SOUTH WALES

|
S

/* Save the registers */

SW
SW
SW
SW
SW
SW
SW
SW
SW
SW

SW

/*

SW

ra,
1) S
s8,
s7,
s6,
s5,
s4,
s3,
s2,
sl,
s0,

Store
Sp,

0S/161 mips switch

40 (sp)
36 (sp)
32 (sp)
28 (sp)
24 (sp)
20 (sp)
16 (sp)
12 (sp)
8 (sp)

4 (sp)

0 (sp)

the old stack pointer in the old pcb */
0 (ao0)

L] THE UNIVERSITY OF
NEW SOUTH WALES

38

0S/161 mips switch

/* Get the new stack pointer from the new pcb */
1w sp, 0O(al)
nop /* delay slot for load */

/* Now, restore the registers */

1w sO0, O(sp)
1w sl, 4(sp)
1w s2, 8(sp)
1w s3, 12(sp)
1w s4, 16(sp)
1w s5, 20(sp)
1w s6, 24 (sp)
1w s7, 28(sp)
1w s8, 32(sp)
1w gp, 36(sp)
1w ra, 40(sp)
nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */
.end mips_switch

THE UNIVERSITY OF
NEW SOUTH WALES

Thread a Threadb | Revisiting

mips_:_switch(a,b) >} 1 Thread SWitCh

i
} mips_sgwitch (b, a)
I
{ I
I
I
I
I
I
I
I
I
I
mips;switch(a,b) > } :
I
{ I
I
I
I
I
I
I
I
I
I
1
-§ - THE UNIVERSITY OF 40

