Log Structured File Systems

- THE UNIVERSITY OF
NEW SOUTH WALES

Motivating Observations

 Memory size is growing at a rapid rate

= Growing proportion of file system reads
will be satisfied by file system buffer cache

= Writes will increasingly dominate reads

==
Rl THE UNIVERSITY OF 2
NEW SOUTH WALES

Motivating Observations

» Creation/Modification/Deletion of small files form the majority of a

typical workload

» Workload poorly supported by traditional Inode-based file system
(e.g. BSD FFS, ext2fs)

— Example: create 1k file results in: 2 writes to the file inode, 1 write to
data block, 1 write to directory data block, 1 write to directory inode

= 5 small writes scattered within group

— Synchronous writes (write-through caching) of metadata and

directories make it worse

» Each operation will wait for disk write to complete.

« Write performance of small files dominated by cost of metadata

writes
Group Data
Super Descrip- | Block Ipode Inode Data blocks
Block : Bitmap | Table
tors Bitmap
3

L] THE UNIVERSITY OF
NEW SOUTH WALES

Motivating Observations

« Consistency checking required for ungraceful
shutdown due to potential for sequence of
updates to have only partially completed.

* File system consistency checkers are time
consuming for large disks.

« Unsatisfactory boot times where consistency
checking is required.

==
| ;E THE UNIVERSITY OF
NEW SOUTH WALES

Basic Ideal!!l

» Buffer sequence of updates in memory
and write all updates sequentially to disk in
one go.

Data| [Inode| | Dir izl
Data
Disk

: E THE UNIVERSITY OF 5

NEW SOUTH WALES

Issues

« How do we now find I-nodes that are scattered
around the disk?

> Keep a map of inode locations
— Inode map is also “logged”

— Assumption is I-node map is heavily cached and
rarely results in extra disk accesses

— To find block in the I-node map, use two fixed location
on the disk contains address of block of the inode
map

» Two copies of the inode map addresses so we can recover if
error during updating map.

=
R THE UNIVERSITY OF !

e NEW SOUTH WALES

B! THE UNIVERSITY OF
‘ NEW SOUTH WALES

LFS versus FFS

« Comparison of creating two small files

flel file2
Log — Disk Disk
Sprite LFS o Unix FFS
filel file2)
Block key: m Inode I Directory |:| Data B Inode map
=1 THE UNIVERSITY OF 9

|Issue
Disks are Finite in Size

* File system “cleaner” runs in background
— Recovers blocks that are no longer in use by
consulting current inode map
* |[dentifies unreachable blocks
— Compacts remaining blocks on disk to form

contiguous segments for improved write
performance

FL| THE UNIVERSITY OF 10

|Issue
Recovery

* File system is check-pointed regularly which saves
— A pointer to the current head of the log
— The current Inode Map blocks

« On recovery, simply restart from previous checkpoint.

— Can scan forward in log and recover any updates written after
previous checkpoint

— Write updates to log (no update in place), so previous checkpoint
always consistent

\ Emm—

Checkpoint

= Location 11

Rl THE UNIVERSITY OF
@il NEW SOUTH WALES

Reliability

« Updated data is written to the log, not in
place.

* Reduces chance of corrupting existing
data.
— Old data in log always safe.

— Crashes only affect recent data

« As opposed to updating (and corrupting) the root
directory.

-é%- THE UNIVERSITY OF 12

B
e NEW SOUTH WALES

Performance

« Comparison between LFS
and SunOS FS Key: Sprite LFS
— Create 10000 1K ﬁleS Files/sec (measured)

| B0 g e e e e
— Read them (in order) e |
| 400 p=frmrmmmm o e e e it R -

— Delete them B I i
e Order of magnitude 1] S T S i —

b il s il 5] 71 -

improvement in ST
performance for small it
erteS "” |—| ‘I_[

Create Read Delete
| G000 1K file access

BB THE UNIVERSITY OF 13

&
@8 NEW SOUTH WALES

LFS not a clear winner

When LFS cleaner overhead is ignored, and FFS runs on a new,
unfragmented file system, each file system has regions of performance
dominance.

— LFS is an order of magnitude faster on small file creates and deletes.
— The systems are comparable on creates of large files (one-half megabyte or more).
— The systems are comparable on reads of files less than 64 kilobytes.

— LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS
is comparable.

— LFS write performance is superior for files of 256 kilobytes or less.
— FFS write performance is superior for files larger than 256 kilobytes.

» Cleaning overhead can degrade LFS performance by more than 34% in a
transaction processing environment. Fragmentation can degrade FFS
performance, over a two to three year period, by at most 15% in most
environments but by as much as 30% in file systems such as a news
partition.

Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan
"File System Logging Versus Clustering: A Performance Comparison”
T THE UNIVERSITY OF 14

Journaling file systems

« Hybrid of
— |-node based file system
— Log structured file system (journal)

* Many variations
— log only meta-data to journal
— log-all to journal

* Need to write-twice (i.e. copy from journal to i-
node based files)

 Example — ext3

- THE UNIVERSITY OF
NEW SOUTH WALES

15

