
Log Structured File Systems

1

Motivating Observations

• Memory size is growing at a rapid rate

⇒ Growing proportion of file system reads
will be satisfied by file system buffer cache

⇒ Writes will increasingly dominate reads

2

⇒ Writes will increasingly dominate reads

Motivating Observations

• Creation/Modification/Deletion of small files form the majority of a
typical workload

• Workload poorly supported by traditional Inode-based file system
(e.g. BSD FFS, ext2fs)
– Example: create 1k file results in: 2 writes to the file inode, 1 write to

data block, 1 write to directory data block, 1 write to directory inode
⇒ 5 small writes scattered within group

–

3

– Synchronous writes (write-through caching) of metadata and
directories make it worse

• Each operation will wait for disk write to complete.

• Write performance of small files dominated by cost of metadata
writes

Super

Block

Group

Descrip-

tors

Data

Block

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

Motivating Observations

• Consistency checking required for ungraceful

shutdown due to potential for sequence of

updates to have only partially completed.

• File system consistency checkers are time

4

• File system consistency checkers are time

consuming for large disks.

• Unsatisfactory boot times where consistency

checking is required.

Basic Idea!!!

• Buffer sequence of updates in memory

and write all updates sequentially to disk in

one go.

5

Data Inode Dir
Meta-

Data

Disk

6

Issues

• How do we now find I-nodes that are scattered

around the disk?

⇒ Keep a map of inode locations
– Inode map is also “logged”

7

– Inode map is also “logged”
– Assumption is I-node map is heavily cached and

rarely results in extra disk accesses
– To find block in the I-node map, use two fixed location

on the disk contains address of block of the inode
map

• Two copies of the inode map addresses so we can recover if
error during updating map.

8

LFS versus FFS

• Comparison of creating two small files

9

Issue

Disks are Finite in Size

• File system “cleaner” runs in background

– Recovers blocks that are no longer in use by

consulting current inode map

• Identifies unreachable blocks

10

• Identifies unreachable blocks

– Compacts remaining blocks on disk to form

contiguous segments for improved write

performance

Issue

Recovery
• File system is check-pointed regularly which saves

– A pointer to the current head of the log

– The current Inode Map blocks

• On recovery, simply restart from previous checkpoint.

– Can scan forward in log and recover any updates written after

11

– Can scan forward in log and recover any updates written after

previous checkpoint

– Write updates to log (no update in place), so previous checkpoint

always consistent

Checkpoint

Location

Reliability

• Updated data is written to the log, not in

place.

• Reduces chance of corrupting existing

data.

12

data.

– Old data in log always safe.

– Crashes only affect recent data

• As opposed to updating (and corrupting) the root

directory.

Performance

• Comparison between LFS
and SunOS FS

– Create 10000 1K files

– Read them (in order)

13

– Read them (in order)

– Delete them

• Order of magnitude
improvement in
performance for small
writes

LFS not a clear winner

• When LFS cleaner overhead is ignored, and FFS runs on a new,

unfragmented file system, each file system has regions of performance

dominance.
– LFS is an order of magnitude faster on small file creates and deletes.

– The systems are comparable on creates of large files (one-half megabyte or more).

– The systems are comparable on reads of files less than 64 kilobytes.

– LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS – LFS read performance is superior between 64 kilobytes and four megabytes, after which FFS

is comparable.

– LFS write performance is superior for files of 256 kilobytes or less.

– FFS write performance is superior for files larger than 256 kilobytes.

• Cleaning overhead can degrade LFS performance by more than 34% in a

transaction processing environment. Fragmentation can degrade FFS

performance, over a two to three year period, by at most 15% in most

environments but by as much as 30% in file systems such as a news

partition.

14

Margo Seltzer and Keith A. Smith and Hari Balakrishnan and Jacqueline Chang and

Sara Mcmains and Venkata Padmanabhan

”File System Logging Versus Clustering: A Performance Comparison”

Journaling file systems

• Hybrid of

– I-node based file system

– Log structured file system (journal)

• Many variations• Many variations

– log only meta-data to journal

– log-all to journal

• Need to write-twice (i.e. copy from journal to i-

node based files)

• Example – ext3

15

