« Consult today at 4pm, k17, 203

* | am away next week
— Herbert Bos
— lectures as usual
— extended lectures cancelled

» Assignment due next week

== TE UNIVERSITY OF

@8l NEW SOUTH WALES

Virtual Memory

B
¢! THE UNIVERSITY OF
@il NEW SOUTH WALES

Virtual Address
Space

e Virtual Memory
Divided into equal-
sized pages
A mapping is a
translation between

* A page and a frame

« A page and null
Mappings defined at
runtime

* They can change

Address space can
have holes

Process does not
have to be
contiguous in
physical memory

A0 (N |00|©
SN

R

Paging

* Physical Memory

O - NWHOI O

— Divided into
equal-sized
frames

Physical Address

Space 3

Virtual Address 5 Typical Address
14 Space Layout

Sp
Kernel 13
I/ 12 Stack region is at top,

and can grow down

Stack 11
10| « Heap has free space to
Shared |/ 9 grow up
Libraries 38 « Textis typically read-only
BSS / « Kernelis in a reserved,
(heap) I\ 6 protected, shared region
O « 0-th page typically not
Data |\ used, why?
Text |/
Cod

Virtual Address Prqgrammer’s perspective:
logically present

System’s perspective: Not
mapped, data on disk

Space

14

« A process may
be only partially
resident

— A”OWS OS tO _____
store individual
pages on disk

— Saves memory
for infrequently
used data & code

» What happens if
we access non-
resident
memory?

B

Physical Address
Space 5

Page Faults

« Referencing an invalid page triggers a page fault
» An exception handled by the OS

« Broadly, two standard page fault types

— lllegal Address (protection error)
 Signal or kill the process

— Page not resident
* Get an empty frame
» Load page from disk

» Update page (translation) table (enter frame #, set valid bit, etc.)
» Restart the faulting instruction

* Note: Some implementations store disk block numbers

of non-resident pages in the page table (with valid bit
Unset)

B
L THE UNIVERSITY OF
@%sl NEW SOUTH WALES

Proc 1 Address Proc 2 Address

Space 15 | 15 Space
Currently 7 ; . 14
{14 i

Physical 12
Address Spage

1 1
21/ (10 [5

14| |14

15 |1

Disk

Memory
Access

OI=(NWIHAO1OO|N|00|(O©

i
|33

Virtual Address

Space
Page
Table
* Page table for
resident part of
address space
l 7
6
S |5
4|4
9|3
2 |2
1 Physical
0 Address Space

A

Shared Pages

 Private code and data < Shared code

— Each process has own — Single copy of code
copy of code and data shared between all

— Code and data can processes executing it
appear anywhere in — Code must not be self
the address space modifying

— Code must appear at
same address in all
processes

e

Proc 1 Address
Space

Two (or more)
processes
running the

same program
and sharing

the text section

Page
ir Table

15

14

13

12

10

OO [(N|00|O©O

Physical
Address Spage

15

14

13

12

10

WA OO |N|(00|©

Proc 2 Address
Space

Page

Table 10

N

Page Table Structure

« Page table is (logically) an array of
frame numbers

— Index by page number
« Each page-table entry (PTE) also has

other bits

Caching

disabled Modified Present/absent
Y ' ’ '
//% Page frame number

A
Referenced Protection
Page
-‘Eﬂg THE UNIVERSITY OF Table 11

NEW SOUTH WALES

N

PTE bits

* Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
* Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

« Reference bit
— Indicates the page has been accessed

* Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above

« Caching bit

— Use to indicate processor should bypass the cache when
accessing memory

« Example: to access device registers or memory

! 1 THE UNIVERSITY OF 12
gl NEW SOUTH WALES

Address Translation

* Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

B
L THE UNIVERSITY OF 13

}::; NEW SOUTH WALES

Virtual Address

Page #

Ofset

Frame # Offset

Reglster

Page Tahle Ptr]

Page Table

Pagedt

@

SEEEL SE | Frame #

Paging Mechanism

| - O O e O R O R O e R e) e O e e - .
-
| - O O O O O O O R O e e O O e - .

Figure 8.3 Address Translation in a Paging System

Frame

Dﬂsset‘ } Pﬂg&

W

Main Memory

Page tables (recap)

THE UNIVERSITY OF
NEW SOUTH WALES

virtual memory

virtual and physical mem chopped up in pages

-— 15-hit Memaory address—-

Vi 1[1]alo[o|o|e]o|ofo|1]e] 1] 1]o| Rl
1 |
* programs use Virtual Present/absent l -
addresses " s
- virtual to physical mapping -
by MMU -
-first check if page present N
(present/absent bit) :
-if yes: address in page table form
MSBs in physical address 4 Yy
— 3 (1] M0 4——
-if no: bring in the page from disk (2
| 1
N®
- |
o|ojc|0j0jojofc{ofof{of{o{ofofolojojot 1o ooo|caf{of1{of1{1{0 :ggius[ter

:? —[r\JHE\E/\/US[EJ)l\L/J'EI'RHS l\—I/—VYALCéE ——20-hit virtual page I - 12-bit offsef—

P - 32-bit virtual address -

Page Tables

 Assume we have
— 32-Dbit virtual address (4 Gbyte address space)
— 4 KByte page size

— How many page table entries do we need for one
process?

- THE UNIVERSITY OF
NEW SOUTH WALES

17

Page Tables

 Assume we have
— 64-Dbit virtual address (humungous address space)
— 4 KByte page size

— How many page table entries do we need for one
process?

* Problem:
— Page table is very large

— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?

18

Page Tables

« Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
- e.g.,0.1—-1 MB text, 0.1 — 10 MB data, 0.1 MB stack

 We need a compact representation that does not waste
space
— But is still very fast to search
* Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

-
B THE UNIVERSITY OF 19
@il NFW SOUTH WALES

Two-level Page
Table

2nd —|evel
page tables
representing
unmapped
pages are not
allocated

— Null in the
top-level
page table

Bits 10

10

12

PT1

PT2

Offset

(@)

1023

o= MNWkOoOo

Top-level
page table

oeCcora-ievel

page tables

{C

JJ

)
¢

)7

{C

JAj i iiitiigy

1023

27

{C

PrvYYyvy

I

O - MNWwkoo

AN NN

FrYyyyy

Page
table for

[the top

4M of
memory

To
pages

Two-level Translation

Virtual Address

10 bits | 10 bits | 12 bits Frame # Offset

Rent page
table ptr

Page
Frame

d-kbyle page
Root page table table (contains
e 1 0124 PTEs)
(contains 1024 PTEs) 1024 PTEs)

N

Program Paging Mechanism Main Memory

Alternative: Inverted Page Table

PID VPN offset

Index | PID VPN ctrl| next

Hash Anchor Table
(HAT)

oA WN O
/
N/

IPT. entry for each physical frame

- THE UNIVERSITY OF
NEW SOUTH WALES

Alternative: Inverted Page Table

PID VPN offset

0 0x5
Index| PID | VPN ctrl | next
Hash Anchor Table 0
(HAT) 1
@ =1 | OxIA 0x40C |
»
0x40CG| O 0x5 0x0
0x40D

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's

a frame table).

* Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault

25

Properties of IPTs

« IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

« Saves a vast amount of space (especially on 64-bit
systems)

« Used in some IBM and HP workstations

FL| THE UNIVERSITY OF 26

Given n processes

* how many page tables will the system
have for
— 'normal’ page tables
— inverted page tables?

B
Rl THE UNIVERSITY OF
NEW SOUTH WALES

Another look at sharing...

- THE UNIVERSITY OF
NEW SOUTH WALES

e

Proc 1 Address

Two (or more)

pProcesses

running the
same program

and sharing
the text section

Page
ir Table

Physical
Address Spage

VM Implementation Issue

 Problem:

— Each virtual memory reference can cause two
physical memory accesses
* One to fetch the page table entry
* One to fetch/store the data
—=Intolerable performance impact!!

« Solution:
— High-speed cache for page table entries (PTEs)

» Called a translation look-aside buffer (TLB)

« Contains recently used page table entries

» Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

] THE UNIVERSITY OF 30
NEW SOUTH WALES

>l TLB operation

devicel!ll

) Secondary
Main Memory Memory

))

Virtual Address

Page # | Offset

Translation
Lookaside Buffer

—»
—
e TLB hit I
I Ofisel
_L 4+
——.
Data Load
Pagefl'able S.tructu.re page
IN Main
memor —
TLEB miss y _/\

—

w ¥

Frame # Offset

Real Address \/\

Page fault

Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

 |If matching PTE found (TLB hit), the address is
translated

* Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
 If on disk, swap it in
» Otherwise, allocate a new page or raise an exception

FL| THE UNIVERSITY OF 32

TLB properties

« Page table is (logically) an array of frame
numbers

« TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W

B
L THE UNIVERSITY O 33
@8 Sl NEW SOUTH WALE

TLB properties

« TLB may or may not be under direct OS control
— Hardware-loaded TLB

* On miss, hardware performs PT lookup and reloads TLB
« Example: Pentium

— Software-loaded TLB

* On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS
« TLB size: typically 64-128 entries

« Can have separate TLBs for instruction fetch
and data access

* TLBs can also be used with inverted page tables
_ (and others)

B THE UNIVERSITY OF 34

e NEW SOUTH WALES

TLB and context switching

 TLB is a shared piece of hardware
» Page tables are per-process (address space)

* TLB entries are process-specific

— On context switch need to flush the TLB (invalidate
all entries)

* high context-switching overhead (Intel x86)

— or tag entries with address-space ID (ASID)
- called a tagged TLB
 used (in some form) on all modern architectures

« TLB entry: ASID, page #, frame #, valid and write-protect
bits _

THE UNIVERSITY OF 35

@8l NEW SOUTH WALES

TLB effect

« Without TLB

— Average number of physical memory
references per virtual reference

=2
« With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99*1+0.01"*2
=1.01

B
L THE UNIVERSITY OF

}::; NEW SOUTH WALES

36

Simplified Components of VM
System

Virtual Address Spaces
(3 processes)

Page Tables for 3

processes
Frame Table

/
e
i |

CPU

TLB

Frame Pool

Physical Memory

L] THE UNIVERSITY OF 37
NEW SOUTH WALES

|
349

-

MIPS R3000 TLB

31

b d (i
VPN ASID (
EntryHi Register (TLE key fields)
3 12 11 10 9 f I 0
PEN N K v G 0

Entrylo Register (TLE data fields)

* N = Not cacheable « V =valid bit

- D = Dirty = Write protect = 064 TLB entries

, » Accessed via software through
* G = Global (ignore ASID Cooprocessor 0 registers

in lookup) — EntryHi and EntryLo

L] THE UNIVERSITY OF 38
NEW SOUTH WALES

R3000 Address
Space Layout

* Kkuseq:

=
W[5
8

2 gigabytes
TLB translated (mapped)
Cacheable (depending on ‘N’ bit)

user-mode and kernel mode
accessible

Page size is 4K

OXFFFFFFFF

0xC0000000

0xA0000000

0x80000000

0x00000000

kKuseg

OXFFFFFFFF

R3000 Address
Space LayOUt OxC0000000

— Switching processes
switches the translation OxA0000000
(page table) for kuseg

0x80000000

Proc 1 Proc 2 Proc 3
Kuseg Kuseg Kuseg

0x00000000

L] THE UNIVERSITY OF

R3000 Address
Space Layout

» kseqO:

512 megabytes

Fixed translation window to

physical memory

« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
Cacheable

Only kernel-mode accessible
Usually where the kernel code is

placed

NEW SOUTH WALES

Physical Memory

Oxffffffff

0xC0000000

0xA0000000

0x80000000

0x00000000

kKuseg

L] THE UNIVERSITY OF

R3000 Address
Space Layout

* kseg1:

512 megabytes

Fixed translation window to

physical memory

* 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
NOT cacheable

Only kernel-mode accessible
Where devices are accessed (and

boot ROM)

NEW SOUTH WALES

Physical Memory

Oxffffffff

0xC0000000

0xA00000

0x800Q0000

0x00000000

kKuseg

R3000 Address
Space Layout

* ksegZ:

1024 megabytes
TLB translated (mapped)
Cacheable

« Depending on the ‘N’-bit
Only kernel-mode accessible

Can be used to store the virtual
linear array page table

L] THE UNIVERSITY OF

NEW SOUTH WALES

Oxffffffff

0xC0000000

0xA0000000

0x80000000

0x00000000

kKuseg

