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Course Outline
• Prerequisites

– COMPXXXX Data structures and algorithms

• Stacks, queues, hash tables, lists, trees,  heaps,-.

– COMPXXXX Microprocessor and Interfacing

• Assembly programming
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• Assembly programming

• Mapping of high-level procedural language to assembly 

language 

• Interrupts

– You are expected to be competent programmers!!!!

• We will be using the C programming language

– The dominant language for OS implementation.

– Need to understand pointers, pointer arithmetic, explicit memory 

allocation.



Why does this fail?

void func(int *x, int *y)

{

*x = 1; *y = 2;

}
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}

void main()

{ 

int *a, *b;

func(a,b);

printf(“%d %d\n”,*a,*b);

} 



Lectures
• Common for all courses (3231/3891/9201/9283)

• Wednesday, 1-3pm, Elec Eng G25

• Thursday, 1-2pm, Webster Theatre A

– Extended OS Thursday 2-3pm Webster 250

• starts in week 2
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• starts in week 2

– The lecture notes will be available on the course web site

• Available prior to lectures, when possible.

• Slide numbers for note taking

– The lecture notes and textbook are NOT a substitute for 

attending lectures.



Tutorials

• Start in week 2

• A tutorial participation mark will 

contribute to your final assessment.

– Participation means participation, NOT 
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– Participation means participation, NOT 

attendance.

– Comp3891/9283 students excluded

– Comp9201 optional

• You will only get participation marks in 

your enrolled tutorial.



Assignments

• Assignments form a substantial component of 
your assessment.

• They are challenging!!!!
– Because operating systems are challenging

• We will be using OS/161,
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• We will be using OS/161,
– an educational operating system

– developed by the Systems Group At Harvard 

– It contains roughly 20,000 lines of code and 
comments



Assignments

• Don’t under estimate the time needed to do the 
assignments.

• If you start a couple days before they are due, you 
will be late.
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will be late.

• To encourage you to start early, 
– Bonus 10% of max mark of the assignment for finishing a 

week early

– To iron out any potential problems with the spec, 5% bonus 
for finishing within 48 hours of assignment release.

– See course handout for exact details

• Read the fine print!!!!



Assignments
• Assignments are in pairs

– Info on how to pair up available soon

• We usually offer advanced versions of the 

assignments

– Available bonus marks are small compared to amount of 
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– Available bonus marks are small compared to amount of 

effort required.

– Student should do it for the challenge, not the marks.

– Attempting the advanced component is not a valid excuse 

for failure to complete the normal component of the 

assignment

• Extended OS students (COMP3891/9283) are 

expected to attempt the advanced assignments



Assignments

• Three assignments

– due roughly week 3, 6, 11

• The first one is trivial

9

• The first one is trivial

– It’s a warm up to have you familiarize 

yourself with the environment and easy 

marks.

– Do not use it as a gauge for judging the 

difficulty of the following assignments.



Assignments

• Late penalty

– 4% of total assignment value per day

• Assignment is worth 20%
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• Assignment is worth 20%

• You get 18, and are 2 days late

• Final mark = 18 – (20*0.04*2) = 16 (16.4)

• Assignments are only accepted up to 

one week late. 8+ days = 0



Assignments

• To help you with the assignments

– We dedicate a tutorial per-assignment to 

discuss issues related to the assignment
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discuss issues related to the assignment

– Prepare for them!!!!!



Plagiarism

• We take cheating seriously!!!

• We systematically check for plagiarised code

– Penalties are generally sufficient to make it difficult 
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to pass



Cheating Statistics

Session  1998/S1 1999/S1 2000/S1 2001/S1 2001/S2 2002/S1 2002/S2 2003/S1 2003/S2

enrolment 178 410 320 300 107 298 156 333 133

suspected 

cheaters 10(6%) 26(6%) 22(7%) 26(9%) 20(19%) 15(5%) ???(?%) 13 (4%) ???(?%)

full penalties
2

*
6

*
9

*
14

*
10 9 5 2 1

reduced 
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reduced 

penalties 7 15 7 7 5 4 2 2 9

cheaters 

failed 4 10 16 16 10 12 5 4 ?

cheaters 

suspended  0 0 1 0 0 1 0 0 0

*Note: Full penalty 0 FL not applied prior to 2001/S1



Exams

• There is NO mid-session

• The final written exam is 2 hours

• Supplementary exams are oral. 
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• Supplementary exams are oral. 

– Supplementaries are available according to 

UNSW & school policy, not as a second 

chance.



Assessment

• Exam Mark 

Component

– Max mark of 100

• Class Mark 

Component

– Max mark of 100
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• Based solely on the 

final exam

• 10% tutorial 

participation

• 90% Assignments



3891/9283

• No tutorial participation component

• Assignment marks scaled to 100
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9201

• Optional tutorial participation, we’ll 

award the better mark of

– Tutorial participation included as for 
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– Tutorial participation included as for 

comp3231

– Class marked based solely on the 

assignments



Undergrad Assessment

• The final assessment is the harmonic 

mean of the exam and class 

component.
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component.

• If  E >= 40,

CE

EC
M

+
=
2



• Maximum of a 50/50 weighted harmonic 

mean and a 20/80 harmonic mean

– Can weight final mark heavily on exam if you can’t 

commit the time to the assignments

– You are rewarded for seriously attempting the 

Postgrads (9201/9283)

– You are rewarded for seriously attempting the 

assignments

• if E >= 40,
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M = max( 2EC
E+C

, 5EC
E+4C

)



Assessment

• If  E < 40

 EC2
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Final Mark = 50
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Assessment

• You need to perform reasonably 
consistently in both exam and class 
components.

• Harmonic mean only has significant 
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• Harmonic mean only has significant 
effect with significant variation.

• Reserve the right to scale, and scale 
courses individually if required.

– Warning: We have not scaled in the past.



Textbook

• Andrew 

Tanenbaum, 

Modern Operating 

Systems, 3rd 
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Systems, 3rd 

Edition, Prentice 

Hall



References

• A. Silberschatz and P.B. Galvin, Operating System Concepts, 
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• William Stallings, Operating Systems: Internals and Design 
Principles, 4th or 5th edition, Prentice Hall. 

• A. Tannenbaum, A. Woodhull, Operating Systems--Design and 
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• A. Tannenbaum, A. Woodhull, Operating Systems--Design and 
Implementation, 2nd edition Prentice Hall 

• John O'Gorman, Operating Systems, MacMillan, 2000 

• Uresh Vahalla, UNIX Internals: The New Frontiers, Prentice 
Hall, 1996 

• McKusick et al., The Design and Implementation of the 4.4 BSD 
Operating System, Addison Wesley, 1996



Consultations/Questions

• Questions should be directed to the forum.

• Admin related queries to Nicholas Fitzroy-Dale 
nfd@cse.unsw.edu.au

• Personal queries can be directed to me 
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• Personal queries can be directed to me 
kevine@cse.unsw.edu.au

• We reserve the right to ignore email sent directly to 
us (including tutors) if it should have been directed to 
the forum.

• Consultation Times
– TBA



Course Outline

• “the course aims to educate students in 

the basic concepts and components of 

operating systems, the relevant 
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operating systems, the relevant 

characteristics of hardware, and the 

tradeoffs between conflicting objectives 

faced by operating systems in efficiently 

supporting a wide range of 

applications.”



Course Outline

• Processes and threads

• Concurrency control

• Memory Management
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• Memory Management

• File Systems

• I/O and Devices

• Security

• Scheduling



Introduction to Operating 

SystemsSystems

Chapter 1 – 1.3



Learning Outcomes

• High-level understand what is an 

operating system and the role it plays

• Appreciate the evolution of operating 
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• Appreciate the evolution of operating 

systems tracks the evolution of 

hardware, and that evolution is repeated 

in each new hardware era.



What is an Operating 

System?
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Viewing the Operating 

System as an Abstract 

Machine
• Extends the basic hardware with added 

functionality

• Provides high-level abstractions
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• Provides high-level abstractions

– More programmer friendly

– Common core for all applications

• It hides the details of the hardware

– Makes application code portable



UsersDisk

Memory

CPU
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CPU

Network

Bandwidth



Viewing the Operating System 

as a Resource Manager

• Responsible for allocating resources to users 

and processes

• Must ensure
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– No Starvation

– Progress

– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share; 

limits (quotas), etc-

– Overall, that the system is efficiently used



Dated View: the Operating 

System as the Privileged  

Component

Operating System

Privileged Mode
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Applications Applications

ApplicationsRequests

(System Calls)

User Mode



The Operating System is 

Privileged
• Applications should not be able to interfere or bypass 

the operating system

– OS can enforce the “extended machine”

– OS can enforce its resource allocation policies
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– OS can enforce its resource allocation policies

– Prevent applications from interfering with each other

• Note: Some Embedded OSs have no privileged 

component, e.g. PalmOS

– Can implement OS functionality, but cannot enforce it.

• Note: Some operating systems implement significant 

OS functionality in user-mode, e.g. User-mode Linux



Why Study Operating 

Systems?
• There are many interesting problems in 

operating systems.

• For a complete, top-to-bottom view of a 
system.
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system.

• Understand performance implications of 
application behaviour.

• Understanding and programming large, 
complex, software systems is a good skill to 
acquire. 



(A brief) Operating System History
• Largely parallels hardware 

development

• First Generation machines

– Vacuum tubes

– Plug boards 
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– Plug boards 

• Programming via wiring

• Users were simultaneously 

designers, engineers, and 

programmers

• “single user”

• difficult to debug (hardware)

– No Operating System



Second Generation Machines

Batch Systems

• IBM 7094
– 0.35 MIPS, 32K x 36-bit 

memory

– 3.5 million dollars

• Batching used to more 

40

• Batching used to more 
efficiently use the 
hardware

– Share machine amongst 
many users

– One at a time

– Debugging a pain

• Drink coffee until jobs 
finished



Batch System 

Operating Systems
• Sometimes called “resident job monitor”

• Managed the Hardware

• Simple Job Control Language (JCL)
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• Simple Job Control Language (JCL)

– Load compiler

– Compile job

– Run job

– End job

• No resource allocation issues

– “one user”



Issue: Keeping Batch 

Systems Busy
• Reading tapes or punch cards was time 

consuming

• Expensive CPU was idle waiting for input
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Third Generation Systems -

Multiprogramming
• Divided memory among several 

loaded jobs

• While one job is loading, CPU 
works on another

• With enough jobs, CPU 100% 

Job 1

Memory
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• With enough jobs, CPU 100% 
busy

• Needs special hardware to 
isolate memory partitions from 
each other
– This hardware was notably absent 

on early batch systems OS

Job 3

Job 2



Multiprogramming Example
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Job turn-around time was 

still an issue.

• Batch systems were well suited to 

– Scientific calculations

– Data processing
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– Data processing

• For programmers, debugging was much 

easier on older first gen. machines as 

the programmer had the machine to 

himself.

• Word processing on a batch system?



Time sharing

• Each user had his/her own terminal 
connected to the machine

• All user’s jobs were multiprogrammed
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• All user’s jobs were multiprogrammed

– Regularly switch between each job

– Do it fast

• Gives the illusion that the programmer 
has the machine to himself

• Early examples: Compatible Time 
Sharing System  (CTSS), MULTICS



An then…

• Further developments (hardware and 

software) resulted in improved techniques, 

concepts, and operating systems-..

– CAP, Hydra, Mach, UNIX V6, BSD UNIX, THE, 
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– CAP, Hydra, Mach, UNIX V6, BSD UNIX, THE, 

Thoth, Sprite, Accent, UNIX SysV, Linux, EROS, 

KeyKOS, OS/360, VMS, HPUX, Apollo Domain, 

Nemesis, L3, L4, CP/M, DOS, Exo-kernel, Angel, 

Mungi, BE OS, Cache Kernel, Choices, V, Inferno, 

Grasshopper, MOSIX, Opal, SPIN, VINO, OS9, 

Plan/9, QNX, Synthetix, Tornado, x-kernel, 

VxWorks, Solaris---.   



The Advent of the PC

• Large Scale Integration (LSI) made small, 

fast(-ish), cheap computers possible

• OSs followed a similar path as with the 

mainframes
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– Simple “single-user” systems (DOS)

– Multiprogramming without protection, (80286 era, 

Window 3.1, 95, 98, ME, etc-, MacOS <= 9)

– “Real” operating systems (UNIX, WinNT, MacOS 

X etc..)



Operating System Time Line
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Computer Hardware 

ReviewReview

Chapter 1.4



Learning Outcomes

• Understand the basic components of 

computer hardware

– CPU, buses, memory, devices controllers, 
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– CPU, buses, memory, devices controllers, 

DMA, Interrupts, hard disks

• Understand the concepts of memory 

hierarchy and caching, and how they 

affect performance. 



Operating Systems

• Exploit the hardware available

• Provide a set of high-level services that 
represent or are implemented by the 
hardware.
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represent or are implemented by the 
hardware.

• Manages the hardware reliably and 
efficiently

• Understanding operating systems 
requires a basic understanding of the 
underlying hardware



Basic Computer Elements
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Basic Computer Elements
• CPU

– Performs computations

– Load data to/from memory via system bus

• Device controllers
– Control operation of their particular device

– Operate in parallel with CPU
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– Operate in parallel with CPU

– Can also load/store to memory (Direct Memory Access, DMA)

– Control register appear as memory locations to CPU 

• Or I/O ports 

– Signal the CPU with “interrupts”

• Memory Controller
– Responsible for refreshing dynamic RAM

– Arbitrating access between different devices and CPU



The real world is logically similar, 

but a little more complex
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A Simple Model of CPU 

Computation

• The fetch-execute cycle
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A Simple Model of CPU 

Computation
• Stack Pointer

• Status Register
– Condition codes

• Positive result PC: 0x0300

CPU Registers
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• Positive result

• Zero result

• Negative result

• General Purpose Registers
– Holds operands of most 

instructions

– Enables programmers to 
minimise memory references.

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn



A Simple Model of CPU 

Computation
• The fetch-execute cycle

– Load memory contents from 

address in program counter 

(PC) PC: 0x0300

CPU Registers
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(PC)

• The instruction

– Execute the instruction

– Increment PC

– Repeat

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn



Privileged-mode Operation

• To protect operating system 
execution, two or more CPU 
modes of operation exist
– Privileged mode (system-, 

CPU Registers

Interrupt Mask

Exception Type

Others

MMU regs
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– Privileged mode (system-, 
kernel-mode)

• All instructions and registers are 
available

– User-mode
• Uses ‘safe’ subset of the 

instruction set

– E.g. no disable interrupts 
instruction

• Only ‘safe’ registers are 
accessible

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn

Others



‘Safe’ registers and 

instructions

• Registers and instructions are safe if

– Only affect the state of the application itself 

– They cannot be used to uncontrollably 
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– They cannot be used to uncontrollably 

interfere with

• The operating system

• Other applications

– They cannot be used to violate a correctly 

implemented operating system policy.



Privileged-mode Operation

• The accessibility of 

addresses within an 

address space 

Address Space

Accessible only

to

Kernel-mode

0xFFFFFFFF
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address space 

changes depending 

on operating mode

– To protect kernel code 

and data

Accessible to 

User- and

Kernel-mode

Kernel-mode

0x00000000

0x80000000



I/O and Interrupts
• I/O events (keyboard, mouse, incoming network 

packets) happen at unpredictable times

• How does the CPU know when to service an I/O 
event? 
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Interrupts
• An interruption of the normal sequence of 

execution

• A suspension of processing caused by an event 

external to that processing, and performed in 

such a way that the processing can be resumed.
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such a way that the processing can be resumed.

• Improves processing efficiency

– Allows the processor to execute other instructions 

while an I/O operation is in progress

– Avoids unnecessary completion checking (polling)



Interrupt Cycle

• Processor checks for interrupts

• If no interrupts, fetch the next instruction

• If an interrupt is pending, divert to the 

interrupt handler
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interrupt handler



Classes of Interrupts

• Program exceptions

(also called synchronous interrupts)

– Arithmetic overflow
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– Division by zero

– Executing an illegal/privileged instruction

– Reference outside user’s memory space.

• Asynchronous (external) events

– Timer

– I/O

– Hardware or power failure



Interrupt Handler

• A software routine that determines the 

nature of the interrupt and performs 

whatever actions are needed.
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whatever actions are needed.

• Control is transferred to the handler by 

hardware.

• The handler is generally part of the 

operating system.



Simple Interrupt

User Mode
Application
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Kernel Mode

Interrupt

Handler



Memory Hierarchy

• Going down the 

hierarchy

– Decreasing cost per 

bit

– Increasing capacity

– Increasing access 
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– Increasing access 

time

– Decreasing 

frequency of access 

to the memory by the 

processor

• Hopefully

• Principle of locality!!!!!



Memory Hierarchy
• Rough approximation of memory hierarchy
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Cache

• Cache is fast memory placed between the CPU and main memory 
– 1 to a few cycles access time compared to RAM access time of tens –

hundreds of cycles

CPU

Registers
Cache Main Memory

Word Transfer Block Transfer
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• Holds recently used data or instructions to save memory accesses.

• Matches slow RAM access time to CPU speed if high hit rate

• Is hardware maintained and (mostly) transparent to software

• Sizes range from few kB to several MB.

• Usually a hierarchy of caches (2–5 levels), on- and off-chip.

• Block transfers can achieve higher transfer bandwidth than single 
words.

– Also assumes probability of using newly fetch data is higher than the 
probability of reuse ejected data.



Processor-DRAM Gap 

(latency)
µProc

60%/yr.

100

1000 CPU

Processor-Memory

Performance Gap:

P
e
rf

o
rm

a
n
c
e “Moore’s Law”
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DRAM

7%/yr.
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Moving-Head Disk Mechanism
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Example Disk Access Times

• Disk can read/write data relatively fast
– 15,000 rpm drive - 80 MB/sec

– 1 KB block is read in 12 microseconds

• Access time dominated by time to locate the 
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• Access time dominated by time to locate the 
head over data
– Rotational latency

• Half one rotation is 2 milliseconds

– Seek time
• Full inside to outside is 8 milliseconds

• Track to track .5 milliseconds

• 2 milliseconds is 164KB in “lost bandwidth”



A Strategy: Avoid Waiting for 

Disk Access

• Keep a subset of the disk’s data in 

memory

⇒ Main memory acts as a cache of disk 
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⇒ Main memory acts as a cache of disk 
contents



Two-level Memories and Hit 

Rates

• Given a two-level memory,

– cache memory and main memory (RAM)

– main memory and disk
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– main memory and disk

what is the effective access time?

• Answer: It depends on the hit rate in the 

first level.



Effective Access Time

Teff = H × T1 + (1−H)× (T1 + T2)
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eff 1 1 2

T1 = access time of memory 1

T2 = access time of memory 2

H = hit rate in memory 1

Teff = effective access time of system



Example

• Cache memory access time 1ns

• Main memory access time 10ns

• Hit rate of 95% 
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Teff = 0.95× 1× 10−9 +

0.05× (1× 10−9 + 10× 10−9)

= 1.5× 10−9


