
Introduction

COMP3231/9201/3891/9283

(Extended) Operating Systems

Kevin Elphinstone

Course Outline
• Prerequisites

– COMPXXXX Data structures and algorithms

• Stacks, queues, hash tables, lists, trees, heaps,-.

– COMPXXXX Microprocessor and Interfacing

• Assembly programming

2

• Assembly programming

• Mapping of high-level procedural language to assembly

language

• Interrupts

– You are expected to be competent programmers!!!!

• We will be using the C programming language

– The dominant language for OS implementation.

– Need to understand pointers, pointer arithmetic, explicit memory

allocation.

Why does this fail?

void func(int *x, int *y)

{

*x = 1; *y = 2;

}

3

}

void main()

{

int *a, *b;

func(a,b);

printf(“%d %d\n”,*a,*b);

}

Lectures
• Common for all courses (3231/3891/9201/9283)

• Wednesday, 1-3pm, Elec Eng G25

• Thursday, 1-2pm, Webster Theatre A

– Extended OS Thursday 2-3pm Webster 250

• starts in week 2

4

• starts in week 2

– The lecture notes will be available on the course web site

• Available prior to lectures, when possible.

• Slide numbers for note taking

– The lecture notes and textbook are NOT a substitute for

attending lectures.

Tutorials

• Start in week 2

• A tutorial participation mark will

contribute to your final assessment.

– Participation means participation, NOT

5

– Participation means participation, NOT

attendance.

– Comp3891/9283 students excluded

– Comp9201 optional

• You will only get participation marks in

your enrolled tutorial.

Assignments

• Assignments form a substantial component of
your assessment.

• They are challenging!!!!
– Because operating systems are challenging

• We will be using OS/161,

6

• We will be using OS/161,
– an educational operating system

– developed by the Systems Group At Harvard

– It contains roughly 20,000 lines of code and
comments

Assignments

• Don’t under estimate the time needed to do the
assignments.

• If you start a couple days before they are due, you
will be late.

7

will be late.

• To encourage you to start early,
– Bonus 10% of max mark of the assignment for finishing a

week early

– To iron out any potential problems with the spec, 5% bonus
for finishing within 48 hours of assignment release.

– See course handout for exact details

• Read the fine print!!!!

Assignments
• Assignments are in pairs

– Info on how to pair up available soon

• We usually offer advanced versions of the

assignments

– Available bonus marks are small compared to amount of

8

– Available bonus marks are small compared to amount of

effort required.

– Student should do it for the challenge, not the marks.

– Attempting the advanced component is not a valid excuse

for failure to complete the normal component of the

assignment

• Extended OS students (COMP3891/9283) are

expected to attempt the advanced assignments

Assignments

• Three assignments

– due roughly week 3, 6, 11

• The first one is trivial

9

• The first one is trivial

– It’s a warm up to have you familiarize

yourself with the environment and easy

marks.

– Do not use it as a gauge for judging the

difficulty of the following assignments.

Assignments

• Late penalty

– 4% of total assignment value per day

• Assignment is worth 20%

10

• Assignment is worth 20%

• You get 18, and are 2 days late

• Final mark = 18 – (20*0.04*2) = 16 (16.4)

• Assignments are only accepted up to

one week late. 8+ days = 0

Assignments

• To help you with the assignments

– We dedicate a tutorial per-assignment to

discuss issues related to the assignment

11

discuss issues related to the assignment

– Prepare for them!!!!!

Plagiarism

• We take cheating seriously!!!

• We systematically check for plagiarised code

– Penalties are generally sufficient to make it difficult

12

to pass

Cheating Statistics

Session 1998/S1 1999/S1 2000/S1 2001/S1 2001/S2 2002/S1 2002/S2 2003/S1 2003/S2

enrolment 178 410 320 300 107 298 156 333 133

suspected

cheaters 10(6%) 26(6%) 22(7%) 26(9%) 20(19%) 15(5%) ???(?%) 13 (4%) ???(?%)

full penalties
2

*
6

*
9

*
14

*
10 9 5 2 1

reduced

13

reduced

penalties 7 15 7 7 5 4 2 2 9

cheaters

failed 4 10 16 16 10 12 5 4 ?

cheaters

suspended 0 0 1 0 0 1 0 0 0

*Note: Full penalty 0 FL not applied prior to 2001/S1

Exams

• There is NO mid-session

• The final written exam is 2 hours

• Supplementary exams are oral.

14

• Supplementary exams are oral.

– Supplementaries are available according to

UNSW & school policy, not as a second

chance.

Assessment

• Exam Mark

Component

– Max mark of 100

• Class Mark

Component

– Max mark of 100

15

• Based solely on the

final exam

• 10% tutorial

participation

• 90% Assignments

3891/9283

• No tutorial participation component

• Assignment marks scaled to 100

16

9201

• Optional tutorial participation, we’ll

award the better mark of

– Tutorial participation included as for

17

– Tutorial participation included as for

comp3231

– Class marked based solely on the

assignments

Undergrad Assessment

• The final assessment is the harmonic

mean of the exam and class

component.

18

component.

• If E >= 40,

CE

EC
M

+
=
2

• Maximum of a 50/50 weighted harmonic

mean and a 20/80 harmonic mean

– Can weight final mark heavily on exam if you can’t

commit the time to the assignments

– You are rewarded for seriously attempting the

Postgrads (9201/9283)

– You are rewarded for seriously attempting the

assignments

• if E >= 40,

19

M = max(2EC
E+C

, 5EC
E+4C

)

Assessment

• If E < 40

 EC2

20










+
=

CE

EC
M

2
,44min

Harmonic Mean (Class Mark = 100 - Exam Mark)

50

60

70

80

90

100

F
in

a
l
M

a
rk

Harm 50/50

Arith 50/50

Arith 20/80

21

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Exam Mark

F
in

a
l
M

a
rk

Arith 20/80

Harm 20/80

Final Mark = 50

50

60

70

80

90

100

E
x
a
m

 M
a
rk

 R
e
q
u
ir

e
d
 t
o
 P

a
s
s

Harm 50/50

22

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Class Mark

E
x
a
m

 M
a
rk

 R
e
q
u
ir

e
d
 t
o
 P

a
s
s

Harm 20/80

Assessment

• You need to perform reasonably
consistently in both exam and class
components.

• Harmonic mean only has significant

23

• Harmonic mean only has significant
effect with significant variation.

• Reserve the right to scale, and scale
courses individually if required.

– Warning: We have not scaled in the past.

Textbook

• Andrew

Tanenbaum,

Modern Operating

Systems, 3rd

24

Systems, 3rd

Edition, Prentice

Hall

References

• A. Silberschatz and P.B. Galvin, Operating System Concepts,
5th, 6th, or 7th edition, Addison Wesley

• William Stallings, Operating Systems: Internals and Design
Principles, 4th or 5th edition, Prentice Hall.

• A. Tannenbaum, A. Woodhull, Operating Systems--Design and

25

• A. Tannenbaum, A. Woodhull, Operating Systems--Design and
Implementation, 2nd edition Prentice Hall

• John O'Gorman, Operating Systems, MacMillan, 2000

• Uresh Vahalla, UNIX Internals: The New Frontiers, Prentice
Hall, 1996

• McKusick et al., The Design and Implementation of the 4.4 BSD
Operating System, Addison Wesley, 1996

Consultations/Questions

• Questions should be directed to the forum.

• Admin related queries to Nicholas Fitzroy-Dale
nfd@cse.unsw.edu.au

• Personal queries can be directed to me

26

• Personal queries can be directed to me
kevine@cse.unsw.edu.au

• We reserve the right to ignore email sent directly to
us (including tutors) if it should have been directed to
the forum.

• Consultation Times
– TBA

Course Outline

• “the course aims to educate students in

the basic concepts and components of

operating systems, the relevant

27

operating systems, the relevant

characteristics of hardware, and the

tradeoffs between conflicting objectives

faced by operating systems in efficiently

supporting a wide range of

applications.”

Course Outline

• Processes and threads

• Concurrency control

• Memory Management

28

• Memory Management

• File Systems

• I/O and Devices

• Security

• Scheduling

Introduction to Operating

SystemsSystems

Chapter 1 – 1.3

Learning Outcomes

• High-level understand what is an

operating system and the role it plays

• Appreciate the evolution of operating

30

• Appreciate the evolution of operating

systems tracks the evolution of

hardware, and that evolution is repeated

in each new hardware era.

What is an Operating

System?

31

32

Viewing the Operating

System as an Abstract

Machine
• Extends the basic hardware with added

functionality

• Provides high-level abstractions

33

• Provides high-level abstractions

– More programmer friendly

– Common core for all applications

• It hides the details of the hardware

– Makes application code portable

UsersDisk

Memory

CPU

34

CPU

Network

Bandwidth

Viewing the Operating System

as a Resource Manager

• Responsible for allocating resources to users

and processes

• Must ensure

35

– No Starvation

– Progress

– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share;

limits (quotas), etc-

– Overall, that the system is efficiently used

Dated View: the Operating

System as the Privileged

Component

Operating System

Privileged Mode

36

Applications Applications

ApplicationsRequests

(System Calls)

User Mode

The Operating System is

Privileged
• Applications should not be able to interfere or bypass

the operating system

– OS can enforce the “extended machine”

– OS can enforce its resource allocation policies

37

– OS can enforce its resource allocation policies

– Prevent applications from interfering with each other

• Note: Some Embedded OSs have no privileged

component, e.g. PalmOS

– Can implement OS functionality, but cannot enforce it.

• Note: Some operating systems implement significant

OS functionality in user-mode, e.g. User-mode Linux

Why Study Operating

Systems?
• There are many interesting problems in

operating systems.

• For a complete, top-to-bottom view of a
system.

38

system.

• Understand performance implications of
application behaviour.

• Understanding and programming large,
complex, software systems is a good skill to
acquire.

(A brief) Operating System History
• Largely parallels hardware

development

• First Generation machines

– Vacuum tubes

– Plug boards

39

– Plug boards

• Programming via wiring

• Users were simultaneously

designers, engineers, and

programmers

• “single user”

• difficult to debug (hardware)

– No Operating System

Second Generation Machines

Batch Systems

• IBM 7094
– 0.35 MIPS, 32K x 36-bit

memory

– 3.5 million dollars

• Batching used to more

40

• Batching used to more
efficiently use the
hardware

– Share machine amongst
many users

– One at a time

– Debugging a pain

• Drink coffee until jobs
finished

Batch System

Operating Systems
• Sometimes called “resident job monitor”

• Managed the Hardware

• Simple Job Control Language (JCL)

41

• Simple Job Control Language (JCL)

– Load compiler

– Compile job

– Run job

– End job

• No resource allocation issues

– “one user”

Issue: Keeping Batch

Systems Busy
• Reading tapes or punch cards was time

consuming

• Expensive CPU was idle waiting for input

42

Third Generation Systems -

Multiprogramming
• Divided memory among several

loaded jobs

• While one job is loading, CPU
works on another

• With enough jobs, CPU 100%

Job 1

Memory

43

• With enough jobs, CPU 100%
busy

• Needs special hardware to
isolate memory partitions from
each other
– This hardware was notably absent

on early batch systems OS

Job 3

Job 2

Multiprogramming Example

44

Job turn-around time was

still an issue.

• Batch systems were well suited to

– Scientific calculations

– Data processing

45

– Data processing

• For programmers, debugging was much

easier on older first gen. machines as

the programmer had the machine to

himself.

• Word processing on a batch system?

Time sharing

• Each user had his/her own terminal
connected to the machine

• All user’s jobs were multiprogrammed

46

• All user’s jobs were multiprogrammed

– Regularly switch between each job

– Do it fast

• Gives the illusion that the programmer
has the machine to himself

• Early examples: Compatible Time
Sharing System (CTSS), MULTICS

An then…

• Further developments (hardware and

software) resulted in improved techniques,

concepts, and operating systems-..

– CAP, Hydra, Mach, UNIX V6, BSD UNIX, THE,

47

– CAP, Hydra, Mach, UNIX V6, BSD UNIX, THE,

Thoth, Sprite, Accent, UNIX SysV, Linux, EROS,

KeyKOS, OS/360, VMS, HPUX, Apollo Domain,

Nemesis, L3, L4, CP/M, DOS, Exo-kernel, Angel,

Mungi, BE OS, Cache Kernel, Choices, V, Inferno,

Grasshopper, MOSIX, Opal, SPIN, VINO, OS9,

Plan/9, QNX, Synthetix, Tornado, x-kernel,

VxWorks, Solaris---.

The Advent of the PC

• Large Scale Integration (LSI) made small,

fast(-ish), cheap computers possible

• OSs followed a similar path as with the

mainframes

48

– Simple “single-user” systems (DOS)

– Multiprogramming without protection, (80286 era,

Window 3.1, 95, 98, ME, etc-, MacOS <= 9)

– “Real” operating systems (UNIX, WinNT, MacOS

X etc..)

Operating System Time Line

49

Computer Hardware

ReviewReview

Chapter 1.4

Learning Outcomes

• Understand the basic components of

computer hardware

– CPU, buses, memory, devices controllers,

51

– CPU, buses, memory, devices controllers,

DMA, Interrupts, hard disks

• Understand the concepts of memory

hierarchy and caching, and how they

affect performance.

Operating Systems

• Exploit the hardware available

• Provide a set of high-level services that
represent or are implemented by the
hardware.

52

represent or are implemented by the
hardware.

• Manages the hardware reliably and
efficiently

• Understanding operating systems
requires a basic understanding of the
underlying hardware

Basic Computer Elements

53

Basic Computer Elements
• CPU

– Performs computations

– Load data to/from memory via system bus

• Device controllers
– Control operation of their particular device

– Operate in parallel with CPU

54

– Operate in parallel with CPU

– Can also load/store to memory (Direct Memory Access, DMA)

– Control register appear as memory locations to CPU

• Or I/O ports

– Signal the CPU with “interrupts”

• Memory Controller
– Responsible for refreshing dynamic RAM

– Arbitrating access between different devices and CPU

The real world is logically similar,

but a little more complex

55

A Simple Model of CPU

Computation

• The fetch-execute cycle

56

A Simple Model of CPU

Computation
• Stack Pointer

• Status Register
– Condition codes

• Positive result PC: 0x0300

CPU Registers

57

• Positive result

• Zero result

• Negative result

• General Purpose Registers
– Holds operands of most

instructions

– Enables programmers to
minimise memory references.

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn

A Simple Model of CPU

Computation
• The fetch-execute cycle

– Load memory contents from

address in program counter

(PC) PC: 0x0300

CPU Registers

58

(PC)

• The instruction

– Execute the instruction

– Increment PC

– Repeat

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn

Privileged-mode Operation

• To protect operating system
execution, two or more CPU
modes of operation exist
– Privileged mode (system-,

CPU Registers

Interrupt Mask

Exception Type

Others

MMU regs

59

– Privileged mode (system-,
kernel-mode)

• All instructions and registers are
available

– User-mode
• Uses ‘safe’ subset of the

instruction set

– E.g. no disable interrupts
instruction

• Only ‘safe’ registers are
accessible

PC: 0x0300

R1

SP: 0xcbf3

Status

�

Rn

Others

‘Safe’ registers and

instructions

• Registers and instructions are safe if

– Only affect the state of the application itself

– They cannot be used to uncontrollably

60

– They cannot be used to uncontrollably

interfere with

• The operating system

• Other applications

– They cannot be used to violate a correctly

implemented operating system policy.

Privileged-mode Operation

• The accessibility of

addresses within an

address space

Address Space

Accessible only

to

Kernel-mode

0xFFFFFFFF

61

address space

changes depending

on operating mode

– To protect kernel code

and data

Accessible to

User- and

Kernel-mode

Kernel-mode

0x00000000

0x80000000

I/O and Interrupts
• I/O events (keyboard, mouse, incoming network

packets) happen at unpredictable times

• How does the CPU know when to service an I/O
event?

62

Interrupts
• An interruption of the normal sequence of

execution

• A suspension of processing caused by an event

external to that processing, and performed in

such a way that the processing can be resumed.

63

such a way that the processing can be resumed.

• Improves processing efficiency

– Allows the processor to execute other instructions

while an I/O operation is in progress

– Avoids unnecessary completion checking (polling)

Interrupt Cycle

• Processor checks for interrupts

• If no interrupts, fetch the next instruction

• If an interrupt is pending, divert to the

interrupt handler

64

interrupt handler

Classes of Interrupts

• Program exceptions

(also called synchronous interrupts)

– Arithmetic overflow

65

– Division by zero

– Executing an illegal/privileged instruction

– Reference outside user’s memory space.

• Asynchronous (external) events

– Timer

– I/O

– Hardware or power failure

Interrupt Handler

• A software routine that determines the

nature of the interrupt and performs

whatever actions are needed.

66

whatever actions are needed.

• Control is transferred to the handler by

hardware.

• The handler is generally part of the

operating system.

Simple Interrupt

User Mode
Application

67

Kernel Mode

Interrupt

Handler

Memory Hierarchy

• Going down the

hierarchy

– Decreasing cost per

bit

– Increasing capacity

– Increasing access

68

– Increasing access

time

– Decreasing

frequency of access

to the memory by the

processor

• Hopefully

• Principle of locality!!!!!

Memory Hierarchy
• Rough approximation of memory hierarchy

69

Cache

• Cache is fast memory placed between the CPU and main memory
– 1 to a few cycles access time compared to RAM access time of tens –

hundreds of cycles

CPU

Registers
Cache Main Memory

Word Transfer Block Transfer

70

• Holds recently used data or instructions to save memory accesses.

• Matches slow RAM access time to CPU speed if high hit rate

• Is hardware maintained and (mostly) transparent to software

• Sizes range from few kB to several MB.

• Usually a hierarchy of caches (2–5 levels), on- and off-chip.

• Block transfers can achieve higher transfer bandwidth than single
words.

– Also assumes probability of using newly fetch data is higher than the
probability of reuse ejected data.

Processor-DRAM Gap

(latency)
µProc

60%/yr.

100

1000 CPU

Processor-Memory

Performance Gap:

P
e
rf

o
rm

a
n
c
e “Moore’s Law”

71

DRAM

7%/yr.
1

10

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

1
9
8
2

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n
c
e

Time

Slide originally from Dave Patterson, Parcon 98

Moving-Head Disk Mechanism

72

Example Disk Access Times

• Disk can read/write data relatively fast
– 15,000 rpm drive - 80 MB/sec

– 1 KB block is read in 12 microseconds

• Access time dominated by time to locate the

73

• Access time dominated by time to locate the
head over data
– Rotational latency

• Half one rotation is 2 milliseconds

– Seek time
• Full inside to outside is 8 milliseconds

• Track to track .5 milliseconds

• 2 milliseconds is 164KB in “lost bandwidth”

A Strategy: Avoid Waiting for

Disk Access

• Keep a subset of the disk’s data in

memory

⇒ Main memory acts as a cache of disk

74

⇒ Main memory acts as a cache of disk
contents

Two-level Memories and Hit

Rates

• Given a two-level memory,

– cache memory and main memory (RAM)

– main memory and disk

75

– main memory and disk

what is the effective access time?

• Answer: It depends on the hit rate in the

first level.

Effective Access Time

Teff = H × T1 + (1−H)× (T1 + T2)

76

eff 1 1 2

T1 = access time of memory 1

T2 = access time of memory 2

H = hit rate in memory 1

Teff = effective access time of system

Example

• Cache memory access time 1ns

• Main memory access time 10ns

• Hit rate of 95%

77

Teff = 0.95× 1× 10−9 +

0.05× (1× 10−9 + 10× 10−9)

= 1.5× 10−9

