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Memory Management
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Process

• One or more threads of execution

• Resources required for execution

– Memory (RAM)

• Program code (“text”)

• Data (initialised, uninitialised, stack)

• Buffers held in the kernel on behalf of the process

– Others

• CPU time

• Files, disk space, printers, etc.
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Some Goals of an Operating 

System
• Maximise memory utilisation

• Maximise CPU utilization

• Minimise response time

• Prioritise “important” processes

• Note: Conflicting goals ⇒ tradeoffs
– E.g. maximising CPU utilisation (by running 

many processes) increases (degrades) 
system response time.
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Memory Management

• Keeps track of what memory is in use and 

what memory is free

• Allocates free memory to process when 

needed

– And deallocates it when they don’t

• Manages the transfer of memory between 

RAM and disk.
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Memory Hierarchy
• Ideally, programmers 

want memory that is

– Fast

– Large

– Nonvolatile

• Not possible

• Memory manager 

coordinates how 

memory hierarchy is 

used.

– Focus usually on 

RAM ⇔ Disk
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Memory Management

• Two broad classes of memory 

management systems

– Those that transfer processes to and from 

disk during execution.

• Called swapping or paging

– Those that don’t

• Simple

• Might find this scheme in an embedded device, 

phone, smartcard, or PDA.
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Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory

- an operating system with one user process
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Monoprogramming

• Okay if 

– Only have one thing to do

– Memory available approximately equates to 

memory required

• Otherwise,

– Poor CPU utilisation in the presence of I/O 

waiting

– Poor memory utilisation with a varied job mix
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Idea

• Subdivide memory and run more than one 

process at once!!!!

– Multiprogramming, Multitasking
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Modeling Multiprogramming

CPU utilization as a function of number of processes in 
memory

Degree of multiprogramming
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Problem: How to divide memory

• One approach 

– divide memory into fixed 

equal-sized partitions

– Any process <= partition 

size can be loaded into 

any partition

Process A

Process B

Process C

Process D
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Simple MM: Fixed, equal-sized 

partitions
• Any unused space in the 

partition is wasted

– Called internal 

fragmentation

• Processes smaller than 

main memory, but larger 

than a partition cannot 

run.

Process A

Process B

Process C

Process D
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Simple MM: Fixed, variable-sized 

partitions

• Multiple Queues: 

– Place process in queue for smallest 

partition that it fits in.
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• Issue

– Some partitions may 

be idle

• Small jobs available, 

but only large partition 

free
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• Single queue, search 

for any jobs that fits
• Small jobs in large 

partition if necessary

– Increases internal 

memory fragmentation
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Fixed Partition Summary

• Simple

• Easy to implement

• Can result in poor memory utilisation

– Due to internal fragmentation

• Used on OS/360 operating system 
(OS/MFT)

– Old mainframe batch system

• Still applicable for simple embedded 
systems
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Dynamic Partitioning

• Partitions are of variable length

• Process is allocated exactly what it needs

– Assume a process knows what it needs
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Dynamic Partitioning

• In previous diagram
– We have 16 meg free in total, but it can’t be used to 

run any more processes requiring > 6 meg as it is 
fragmented

– Called external fragmentation

• We end up with unusable holes
• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory together in 
one large block.

– Compaction is possible only if relocation is dynamic, and is done 
at execution time.
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Recap: Fragmentation

• External Fragmentation:

– The space wasted external to the allocated memory 

regions.

– Memory space exists to satisfy a request, but it is 

unusable as it is not contiguous.

• Internal Fragmentation:

– The space wasted internal to the allocated memory 

regions.

– allocated memory may be slightly larger than 

requested memory; this size difference is wasted 

memory internal to a partition.



22

Dynamic Partition Allocation 

Algorithms
• Basic Requirements

– Quickly locate a free partition satisfying the 

request

– Minimise external fragmentation

– Efficiently support merging two adjacent free 

partitions into a larger partition 
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Classic Approach

• Represent available memory as a linked 

list of available “holes”.

– Base, size

– Kept in order of increasing address

• Simplifies merging of adjacent holes into larger 

holes.

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link
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Coalescing Free Partitions with Linked 

Lists

Four neighbor combinations for the terminating 
process X
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Dynamic Partitioning Placement 

Algorithm
• First-fit algorithm

– Scan the list for the first entry that fits
• If greater in size, break it into an allocated and free part

• Intent: Minimise amount of searching performed

– Generally results in many processes loaded, and 
holes at the front end of memory that must be 
searched over when trying to find a free block.

– May have lots of unusable holes at the beginning.
• External fragmentation

– Tends to preserve larger blocks at the end of memory
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Dynamic Partitioning Placement 

Algorithm
• Next-fit

– Like first-fit, except it begins its search from the point 
in list where the last request succeeded instead of at 
the beginning.

• Spread allocation more uniformly over entire memory

– More often allocates a block of memory at the end of memory 
where the largest block is found

• The largest block of memory is broken up into smaller blocks
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Dynamic Partitioning Placement 

Algorithm
• Best-fit algorithm

– Chooses the block that is closest in size to the 

request

– Poor performer

• Has to search complete list

• Since smallest block is chosen for a process, the 

smallest amount of external fragmentation is left 

– Create lots of unusable holes

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link



28

Dynamic Partitioning Placement 

Algorithm
• Worst-fit algorithm

– Chooses the block that is largest in size 

(worst-fit)

• Idea is to leave a usable fragment left over

– Poor performer

• Has to search complete list

• Still leaves many unusable fragments
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Dynamic Partition Allocation 

Algorithm
• Summary

– First-fit and next-fit are generally better than 

the others and easiest to implement

• Note: Used rarely these days

– Typical in-kernel allocators used are lazy 

buddy, and slab allocators 

• Might go through these later in session (or in 

extended)
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Compaction

• We can reduce 

external fragmentation 

by compaction

– Only if we can relocate 

running programs

– Generally requires 

hardware support

Process A

Process B

Process C

Process D

Process A

Process B

Process C

Process D



32

Issues with Dynamic 

Partitioning
• We have ignored

– Relocation

• How does a process run in 

different locations in memory?

– Protection

• How do we prevent processes 

interfering with each other

Process A

Process B

Process C

Process D
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Example Logical Address-Space 

Layout
• Logical 

addresses refer 
to specific 
locations within 
the program

• Once running, 
these address 
must refer to real 
physical memory

• When are logical 
addresses bound 
to physical?

0x0000

0xFFFF
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When are memory 

addresses bound?
• Compile/link time

– Compiler/Linker binds the 
addresses

– Must know “run” location at 
compile time

– Recompile if location changes 

• Load time
– Compiler generates relocatable

code

– Loader binds the addresses at 
load time

• Run time
– Logical compile-time addresses 

translated to physical addresses 
by special hardware.
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Hardware Support for Runtime 

Binding and Protection
• For process B to run using logical 

addresses

– Need to add an appropriate offset to its 

logical addresses

• Achieve relocation

• Protect memory “lower” than B

– Must limit the maximum logical address B 

can generate

• Protect memory “higher” than B

Process A

Process B

Process C

Process D

baselimit

0x0000

0xFFFF
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Hardware Support for Relocation and 

Limit Registers
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Base and Limit Registers

• Also called
– Base and bound registers

– Relocation and limit registers

• Base and limit registers
– Restrict and relocate the currently 

active process

– Base and limit registers must be 
changed at

• Load time

• Relocation (compaction time)

• On a context switch 

Process A

Process B

Process C

Process D

baselimit

0x0000

0xFFFF

0x0000

0x1FFF

0x8000

0x9FFF

base=0x8000

limit = 0x2000
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Base and Limit Registers

• Also called
– Base and bound registers

– Relocation and limit registers

• Base and limit registers
– Restrict and relocate the currently 

active process

– Base and limit registers must be 
changed at

• Load time

• Relocation (compaction time)

• On a context switch 

Process A

Process B

Process C

Process D

base
limit

0x0000

0xFFFF

0x0000

0x2FFF

0x4000

0x6FFF

base=0x4000

limit = 0x3000
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Base and Limit Registers

• Cons

– Physical memory allocation must still be 

contiguous

– The entire process must be in memory

– Do not support partial sharing of address 

spaces
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Timesharing

• Thus far, we have a system 
suitable for a batch system
– Limited number of dynamically 

allocated processes
• Enough to keep CPU utilised

– Relocated at runtime

– Protected from each other

• But what about timesharing?
– We need more than just a small 

number of processes running at 
once

Process A

Process B

Process C

Process D

0x0000

0xFFFF
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Swapping
• A process can be swapped temporarily out of memory to 

a backing store, and then brought back into memory for 
continued execution.

• Backing store – fast disk large enough to accommodate 
copies of all memory images for all users; must provide 
direct access to these memory images.

• Can prioritize – lower-priority process is swapped out so 
higher-priority process can be loaded and executed.

• Major part of swap time is transfer time; total transfer 
time is directly proportional to the amount of memory 
swapped.
– slow



42

Schematic View of Swapping
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So far we have assumed a 

process is smaller than memory
• What can we do if a process is larger than 

main memory?
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Overlays

• Keep in memory only those instructions 

and data that are needed at any given 

time.

• Implemented by user, no special support 

needed from operating system

• Programming design of overlay structure 

is complex
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Overlays for a Two-Pass Assembler
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Virtual Memory

• Developed to address the issues identified with 
the simple schemes covered thus far.

• Two classic variants
– Paging

– Segmentation

• Paging is now the dominant one of the two

• Some architectures support hybrids of the two 
schemes 
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Virtual Memory - Paging
• Partition physical memory into small 

equal sized chunks
– Called frames

• Divide each process’s virtual (logical) 
address space into same size chunks
– Called pages

– Virtual memory addresses consist of a 
page number and offset within the page

• OS maintains a page table 
– contains the frame location for each page

– Used to translate each virtual address to 
physical address

– The relation between
virtual addresses and physical memory 
addresses is given by page table

• Process’s physical memory does not
have to be contiguous
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Paging

• The relation between

virtual addresses and 

physical memory addresses 

is given by page table
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Paging

• No external fragmentation

• Small internal fragmentation

• Allows sharing by mapping several pages 

to the same frame

• Abstracts physical organisation

– Programmer only deal with virtual addresses

• Minimal support for logical organisation

– Each unit is one or more pages
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Memory Management Unit

The position and function of the MMU



53

MMU Operation

Internal operation of MMU with 16 4 KB pages

Assume for now that 

the page table is 

contained wholly in 

registers within the 

MMU
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Virtual Memory - Segmentation

• Memory-management scheme 
that supports user’s view of 
memory. 

• A program is a collection of 
segments.  A segment is a 
logical unit such as:
– main program, procedure, 

function, method, object, local 
variables, global variables, 
common block, stack, symbol 
table, arrays
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Logical View of Segmentation

1

3

2
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1
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3

user space physical memory space
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Segmentation Architecture 

• Logical address consists of a two tuple: <segment-
number, offset>,
– Identifies segment and address with segment

• Segment table – each table entry has:
– base – contains the starting physical address where the 

segments reside in memory.

– limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the 
segment table’s location in memory.

• Segment-table length register (STLR) indicates number 
of segments used by a program;

segment number s is legal if s < STLR.
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Segmentation Hardware
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Example of Segmentation
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Segmentation Architecture

• Protection.  With each entry in segment table 
associate:
– validation bit = 0 ⇒ illegal segment

– read/write/execute privileges

• Protection bits associated with segments; code 
sharing occurs at segment level.

• Since segments vary in length, memory 
allocation is a dynamic partition-allocation 
problem.

• A segmentation example is shown in the 
following diagram
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Sharing of Segments
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Segmentation Architecture

• Relocation.
– dynamic

⇒ by segment table 

• Sharing.
– shared segments

⇒ same physical backing multiple segments
⇒ ideally, same segment number

• Allocation.
– First/next/best fit

⇒ external fragmentation
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Segmentation

Comparison of paging and segmentation


