
1

Memory Management

2

Process

• One or more threads of execution

• Resources required for execution

– Memory (RAM)

• Program code (“text”)

• Data (initialised, uninitialised, stack)

• Buffers held in the kernel on behalf of the process

– Others

• CPU time

• Files, disk space, printers, etc.

3

Some Goals of an Operating

System
• Maximise memory utilisation

• Maximise CPU utilization

• Minimise response time

• Prioritise “important” processes

• Note: Conflicting goals ⇒ tradeoffs
– E.g. maximising CPU utilisation (by running

many processes) increases (degrades)
system response time.

4

Memory Management

• Keeps track of what memory is in use and

what memory is free

• Allocates free memory to process when

needed

– And deallocates it when they don’t

• Manages the transfer of memory between

RAM and disk.

5

Memory Hierarchy
• Ideally, programmers

want memory that is

– Fast

– Large

– Nonvolatile

• Not possible

• Memory manager

coordinates how

memory hierarchy is

used.

– Focus usually on

RAM ⇔ Disk

6

Memory Management

• Two broad classes of memory

management systems

– Those that transfer processes to and from

disk during execution.

• Called swapping or paging

– Those that don’t

• Simple

• Might find this scheme in an embedded device,

phone, smartcard, or PDA.

7

Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory

- an operating system with one user process

8

Monoprogramming

• Okay if

– Only have one thing to do

– Memory available approximately equates to

memory required

• Otherwise,

– Poor CPU utilisation in the presence of I/O

waiting

– Poor memory utilisation with a varied job mix

9

Idea

• Subdivide memory and run more than one

process at once!!!!

– Multiprogramming, Multitasking

10

Modeling Multiprogramming

CPU utilization as a function of number of processes in
memory

Degree of multiprogramming

11

Problem: How to divide memory

• One approach

– divide memory into fixed

equal-sized partitions

– Any process <= partition

size can be loaded into

any partition

Process A

Process B

Process C

Process D

12

Simple MM: Fixed, equal-sized

partitions
• Any unused space in the

partition is wasted

– Called internal

fragmentation

• Processes smaller than

main memory, but larger

than a partition cannot

run.

Process A

Process B

Process C

Process D

13

Simple MM: Fixed, variable-sized

partitions

• Multiple Queues:

– Place process in queue for smallest

partition that it fits in.

14

• Issue

– Some partitions may

be idle

• Small jobs available,

but only large partition

free

15

• Single queue, search

for any jobs that fits
• Small jobs in large

partition if necessary

– Increases internal

memory fragmentation

16

Fixed Partition Summary

• Simple

• Easy to implement

• Can result in poor memory utilisation

– Due to internal fragmentation

• Used on OS/360 operating system
(OS/MFT)

– Old mainframe batch system

• Still applicable for simple embedded
systems

17

Dynamic Partitioning

• Partitions are of variable length

• Process is allocated exactly what it needs

– Assume a process knows what it needs

20

Dynamic Partitioning

• In previous diagram
– We have 16 meg free in total, but it can’t be used to

run any more processes requiring > 6 meg as it is
fragmented

– Called external fragmentation

• We end up with unusable holes
• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory together in
one large block.

– Compaction is possible only if relocation is dynamic, and is done
at execution time.

21

Recap: Fragmentation

• External Fragmentation:

– The space wasted external to the allocated memory

regions.

– Memory space exists to satisfy a request, but it is

unusable as it is not contiguous.

• Internal Fragmentation:

– The space wasted internal to the allocated memory

regions.

– allocated memory may be slightly larger than

requested memory; this size difference is wasted

memory internal to a partition.

22

Dynamic Partition Allocation

Algorithms
• Basic Requirements

– Quickly locate a free partition satisfying the

request

– Minimise external fragmentation

– Efficiently support merging two adjacent free

partitions into a larger partition

23

Classic Approach

• Represent available memory as a linked

list of available “holes”.

– Base, size

– Kept in order of increasing address

• Simplifies merging of adjacent holes into larger

holes.

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

24

Coalescing Free Partitions with Linked

Lists

Four neighbor combinations for the terminating
process X

25

Dynamic Partitioning Placement

Algorithm
• First-fit algorithm

– Scan the list for the first entry that fits
• If greater in size, break it into an allocated and free part

• Intent: Minimise amount of searching performed

– Generally results in many processes loaded, and
holes at the front end of memory that must be
searched over when trying to find a free block.

– May have lots of unusable holes at the beginning.
• External fragmentation

– Tends to preserve larger blocks at the end of memory

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

26

Dynamic Partitioning Placement

Algorithm
• Next-fit

– Like first-fit, except it begins its search from the point
in list where the last request succeeded instead of at
the beginning.

• Spread allocation more uniformly over entire memory

– More often allocates a block of memory at the end of memory
where the largest block is found

• The largest block of memory is broken up into smaller blocks

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

27

Dynamic Partitioning Placement

Algorithm
• Best-fit algorithm

– Chooses the block that is closest in size to the

request

– Poor performer

• Has to search complete list

• Since smallest block is chosen for a process, the

smallest amount of external fragmentation is left

– Create lots of unusable holes

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

28

Dynamic Partitioning Placement

Algorithm
• Worst-fit algorithm

– Chooses the block that is largest in size

(worst-fit)

• Idea is to leave a usable fragment left over

– Poor performer

• Has to search complete list

• Still leaves many unusable fragments

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

30

Dynamic Partition Allocation

Algorithm
• Summary

– First-fit and next-fit are generally better than

the others and easiest to implement

• Note: Used rarely these days

– Typical in-kernel allocators used are lazy

buddy, and slab allocators

• Might go through these later in session (or in

extended)

31

Compaction

• We can reduce

external fragmentation

by compaction

– Only if we can relocate

running programs

– Generally requires

hardware support

Process A

Process B

Process C

Process D

Process A

Process B

Process C

Process D

32

Issues with Dynamic

Partitioning
• We have ignored

– Relocation

• How does a process run in

different locations in memory?

– Protection

• How do we prevent processes

interfering with each other

Process A

Process B

Process C

Process D

33

Example Logical Address-Space

Layout
• Logical

addresses refer
to specific
locations within
the program

• Once running,
these address
must refer to real
physical memory

• When are logical
addresses bound
to physical?

0x0000

0xFFFF

34

When are memory

addresses bound?
• Compile/link time

– Compiler/Linker binds the
addresses

– Must know “run” location at
compile time

– Recompile if location changes

• Load time
– Compiler generates relocatable

code

– Loader binds the addresses at
load time

• Run time
– Logical compile-time addresses

translated to physical addresses
by special hardware.

35

Hardware Support for Runtime

Binding and Protection
• For process B to run using logical

addresses

– Need to add an appropriate offset to its

logical addresses

• Achieve relocation

• Protect memory “lower” than B

– Must limit the maximum logical address B

can generate

• Protect memory “higher” than B

Process A

Process B

Process C

Process D

baselimit

0x0000

0xFFFF

36

Hardware Support for Relocation and

Limit Registers

37

Base and Limit Registers

• Also called
– Base and bound registers

– Relocation and limit registers

• Base and limit registers
– Restrict and relocate the currently

active process

– Base and limit registers must be
changed at

• Load time

• Relocation (compaction time)

• On a context switch

Process A

Process B

Process C

Process D

baselimit

0x0000

0xFFFF

0x0000

0x1FFF

0x8000

0x9FFF

base=0x8000

limit = 0x2000

38

Base and Limit Registers

• Also called
– Base and bound registers

– Relocation and limit registers

• Base and limit registers
– Restrict and relocate the currently

active process

– Base and limit registers must be
changed at

• Load time

• Relocation (compaction time)

• On a context switch

Process A

Process B

Process C

Process D

base
limit

0x0000

0xFFFF

0x0000

0x2FFF

0x4000

0x6FFF

base=0x4000

limit = 0x3000

39

Base and Limit Registers

• Cons

– Physical memory allocation must still be

contiguous

– The entire process must be in memory

– Do not support partial sharing of address

spaces

40

Timesharing

• Thus far, we have a system
suitable for a batch system
– Limited number of dynamically

allocated processes
• Enough to keep CPU utilised

– Relocated at runtime

– Protected from each other

• But what about timesharing?
– We need more than just a small

number of processes running at
once

Process A

Process B

Process C

Process D

0x0000

0xFFFF

41

Swapping
• A process can be swapped temporarily out of memory to

a backing store, and then brought back into memory for
continued execution.

• Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images.

• Can prioritize – lower-priority process is swapped out so
higher-priority process can be loaded and executed.

• Major part of swap time is transfer time; total transfer
time is directly proportional to the amount of memory
swapped.
– slow

42

Schematic View of Swapping

43

So far we have assumed a

process is smaller than memory
• What can we do if a process is larger than

main memory?

44

Overlays

• Keep in memory only those instructions

and data that are needed at any given

time.

• Implemented by user, no special support

needed from operating system

• Programming design of overlay structure

is complex

45

Overlays for a Two-Pass Assembler

46

Virtual Memory

• Developed to address the issues identified with
the simple schemes covered thus far.

• Two classic variants
– Paging

– Segmentation

• Paging is now the dominant one of the two

• Some architectures support hybrids of the two
schemes

47

Virtual Memory - Paging
• Partition physical memory into small

equal sized chunks
– Called frames

• Divide each process’s virtual (logical)
address space into same size chunks
– Called pages

– Virtual memory addresses consist of a
page number and offset within the page

• OS maintains a page table
– contains the frame location for each page

– Used to translate each virtual address to
physical address

– The relation between
virtual addresses and physical memory
addresses is given by page table

• Process’s physical memory does not
have to be contiguous

48

Paging

• The relation between

virtual addresses and

physical memory addresses

is given by page table

51

Paging

• No external fragmentation

• Small internal fragmentation

• Allows sharing by mapping several pages

to the same frame

• Abstracts physical organisation

– Programmer only deal with virtual addresses

• Minimal support for logical organisation

– Each unit is one or more pages

52

Memory Management Unit

The position and function of the MMU

53

MMU Operation

Internal operation of MMU with 16 4 KB pages

Assume for now that

the page table is

contained wholly in

registers within the

MMU

54

Virtual Memory - Segmentation

• Memory-management scheme
that supports user’s view of
memory.

• A program is a collection of
segments. A segment is a
logical unit such as:
– main program, procedure,

function, method, object, local
variables, global variables,
common block, stack, symbol
table, arrays

55

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

56

Segmentation Architecture

• Logical address consists of a two tuple: <segment-
number, offset>,
– Identifies segment and address with segment

• Segment table – each table entry has:
– base – contains the starting physical address where the

segments reside in memory.

– limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the
segment table’s location in memory.

• Segment-table length register (STLR) indicates number
of segments used by a program;

segment number s is legal if s < STLR.

57

Segmentation Hardware

58

Example of Segmentation

59

Segmentation Architecture

• Protection. With each entry in segment table
associate:
– validation bit = 0 ⇒ illegal segment

– read/write/execute privileges

• Protection bits associated with segments; code
sharing occurs at segment level.

• Since segments vary in length, memory
allocation is a dynamic partition-allocation
problem.

• A segmentation example is shown in the
following diagram

60

Sharing of Segments

61

Segmentation Architecture

• Relocation.
– dynamic

⇒ by segment table

• Sharing.
– shared segments

⇒ same physical backing multiple segments
⇒ ideally, same segment number

• Allocation.
– First/next/best fit

⇒ external fragmentation

62

Segmentation

Comparison of paging and segmentation

