System Calls

Learning Outcomes

* A high-level understanding of System Calls

— Mostly from the user’'s perspective
* From textbook (section 1.6)

« Exposure architectural details of the MIPS R3000

— Detailed understanding of the of exception handling mechanism
 From “Hardware Guide” on class web site
« Understanding of the existence of compiler function
calling conventions

— Including details of the MIPS ‘C’ compiler calling convention
* Understanding of how the application kernel boundary is

crossed with system calls in general

* Including an appreciation of the relationship between a case study
(0OS/161 system call handling) and the general case.

&=

Operating System
System Calls

Kernel Level

Requests

(System Calls)
User Level

Ol THE UNIVERSITY OF 3
NEW SOUTH WALES

System Calls

« Can be viewed as special procedure calls
— Provides for a controlled entry into the kernel

— While in kernel, they perform a privileged
operation

— Returns to original caller with the result

* The system call interface represents the
abstract machine provided by the
operating system.

THE UNIVERSITY OF 4

i 3’- NEW SOUTH WALES

A Brief Overview of Classes
System Calls

* From the user’s perspective
— Process Management
— File 1/O
— Directories management
— Some other selected Calls

— There are many more
* On Linux, see man syscalls for a list

Some System Calls For Process
Management

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

S = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

Some System Calls For File
Management

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Some System Calls For Directory
Management

Directory and file system management

Call Description
s = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name?2) Create a new entry, name2, pointing to name1
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Some System Calls For Miscellaneous
Tasks

Miscellaneous

Call Description
s = chdir(dirname) Change the working directory
s = chmod(name, mode) Change a file's protection bits
s = kill(pid, signal) Send a signal to a process
seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

System Calls
* A stripped down shell:

while (TRUE) { [* repeat forever */
type_prompt(); /* display prompt */
read_command (command, parameters) /* input from terminal */
if (fork() '=0) { /* fork off child process */
/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */
} else {
/* Child code */
execve (command, parameters, 0); /* execute command */
}
)

B THE UNIVERSITY OF 10

System Calls

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close afile
read ReadFile Read data from afile
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

e THE UNIVERSITY OF
NEW SOUTH WALES

Some Win32 API calls

11

The MIPS R2000/R3000

» Before looking at system call mechanics in
some detail, we need a basic
understanding of the MIPS R3000

B2
g THE UNIVERSITY OF 12
NEW SOUTH WALES

MIPS R3000

* RISC architecture — 5 stage pipeline

- register . _ reqister
[-cache file ALl C-cache File

instr 1 IF RD ALU MEM WE
=
A
%
S instr? IF RO ALU MEM WE
s |
41
e
=
L nstr 3 IF RD ALU MEM WE
EE-:

Time -
Figure 1.1. MIPS 5-stage pipeline
13

B THE UNIVERSITY OF
NEW SOUTH WALES

MIPS R3000

 |Load/store architecture

— No instructions that operate on memory except load
and store

— Simple load/stores to/from memory from/to registers
o Store word: sw r4, (rbh)

— Store contents of r4 in memory using address contained in
register r5

 Load word: 1w r3, (r7)
— Load contents of memory into r3 using address contained in r7

— Delay of one instruction after load before data available in
destination register

» Must always an instruction between a load from memory
and the subsequent use of the register.

— 1lw, sw, 1lb, sb, 1h, sh,....

&=
Ll THE UNIVERSITY OF 14
NEW SOUTH WALES

MIPS R3000

* Arithmetic and logical operations are

register to register operations
 E.g.,add r3, r2, r1
* No arithmetic operations on memory

 Example
—add r3, r2, rl1=>r3=r2+r1

« Some other instructions

—add, sub, and, or, xor, sll, srl

EL| THE UNIVERSITY OF 15

MIPS R3000

* All instructions are encoded in 32-bit

« Some instructions have immediate operands

— Immediate values are constants encoded in the
instruction itself

— Only 16-bit value

— Examples
« Add Immediate: addi r2, rl, 2048
>r2=r1+ 2048
* Load Immediate : 11 r2, 1234
>r2=1234

=
L] THE UNIVERSITY OF 16
NEW SOUTH WALES

MIPS Registers

« User-mode accessible
registers

— 32 general purpose registers
* rO hardwired to zero

* r31 the link reqister for jump-
and-link (JAL) instruction

— HI/LO

» 2 * 32-bits for multiply and
divide
- PC
« Not directly visible

* Modified implicitly by jump and
branch instructions

SR THE UNIVERSITY OF

:’:\a- NEW SOUTH WALES

Figure 2-6 CPU Registers

3l

31

10 (hardwired to zero)

HI

LO

-
IZ

r3

r4

31

31

PC

General Purpose Registers

Special Purpose Re

oisters

Branching and Jumping

* Branching and
jumping have a
branch delay slot

— The instruction
following a branch
or jump is always
executed

1li r2, 1

sw r0, (xr3)

J 1f
1li r2, 2
1li r3, 3

sw r2, (r3)

18

Jump and Link

« JAL Is used to

implement function jal 1f
calls nop
—1r31 =PC+8 lw r4, (r6)

 Return Address
register (RA) is used
to return from function
call

nop
Bl THE UNIVERSITY OF 19

:’:\a- NEW SOUTH WALES

R3000 Address
Space Layout

* kuseq:
— 2 gigabytes
— MMU translated
(mapped)
— Cacheable

— user-mode and kernel
mode accessible

— Page size is 4K

SR THE UNIVERSITY OF
NEW SOUTH WALES

OxFFFFFFFF

0xC000000

0xA0000000

0x80000000

0x00000000

Kuseg

Oxffffffff

R3000 Address

Space Layout c.cooe0000
* ksegO:

— 512 megabytes 0xA0000000

— Fixed translation window to
physical memory

« 0x80000000 - OxOfffffff virtual =

0x00000000 - Ox1fffffff physical 0x80000500
« MMU not used

— Cacheable

— Only kernel-mode accessible

— Usually where the kernel code is

placed kuseg

e Tooeenos (EEEEEIEERE
0x00000000

=z

|
A

1 THE UNIVERSITY OF

R3000 Address
Space Layout

» kseg1:

512 megabytes

Fixed translation window to

physical memory

* 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

* MMU not used
NOT cacheable

Only kernel-mode accessible
Where devices are accessed (and

boot ROM)

NEW SOUTH WALES

Physical Memory

Oxffffffff

0xC0000000

0xA00000

0x80000000

0x00000000

kKuseg

R3000 Address
Space Layout

* ksegZ2:
— 1024 megabytes
— MMU translated
(mapped)
— Cacheable

— Only kernel-mode
accessible

SR THE UNIVERSITY OF
NEW SOUTH WALES

Oxffffffff

0xC0000000

0xA0000000

0x80000000

0x00000000

Kuseg

System161 Aside

« System/161 simulates an R3000 without a
cache.
— You don’t need to worry about cache issues

with programming OS161 running on
System/161

1 THE UNIVERSITY OF 24
NEW SOUTH WALES

Coprocessor 0

* The processor control registers are
located in CPO

— Exception management registers
— Translation management reqisters

« CPO is manipulated using mtcO (move to)
and mfcO (move from) instructions

— mtc0/mfcO are only accessible in kernel
mode.

THE UNIVERSITY OF 25

; 3’- NEW SOUTH WALES

CPO Registers

* Exception Management Miscellaneous

 c0 _cause

— Cause.of the recent — CO_prId
exception « Processor Identifier
» c0_status
— Current status of the o Memory Management
CPU :
. ¢0_epc * c0_index
— Address of the c0_random
instruction that caused . :
the exception cO_entryhl
» Note the BD bit in * c0_entrylo
cO cause
- cO0 context
« c0_badvaddr —
— Address accessed that — More about these later
caused the exception in course

1 THE UNIVERSITY OF
NEW SOUTH WALES

26

cO

status

21 a0 29 28 27 20 25 24 23 L 21 210 15 18 17 | &5
CU3 | Ccuz | Ccul | Ccuo () KE i BE ['S PE | CM P | swC | IsC
15 ot I § 5 ! 3 2 | ()
1M () kKUo | TEo | KUp | IEp | KUc | 1Ec
Figure 3.2. Fields in status register (SR)
* For practical purposes, you can ignore
these bits
— Green background is the focus
-Eﬂ- THE UNIVERSITY OF 27

’:,‘:1\;‘?
2] NEW SOUTH WALES

cO status

21 30 29 28 27 2b 25 24 24 &l 21 20 19 15 17 | &

CU3 | CUZ | CUL | cuo 0 RE 0 BEV| TS | PE | CM | PZ |swC| IsC

15 N 7 § 5 1 3 2 1 0
M | 0 | k;u.:-| [Fo | [{LJ[:-‘ [Fip | }f;u.r| IFc ‘

Figure 3.2, FPields in status register (5K)

e |M « KU
— Individual interrupt mask — 0 =kernel
bits — 1 = user mode
— 6 external e |E
— 2 software — 0 = all interrupts masked
— 1 = interrupts enable

« Mask determined via IM bits
C, p, 0 = current, previous, old

28

el THE UNIVERSITY OF
.,,:;\,; NEW SOUTH WALES

cO status

A1 30 29 28 27 20 25 24 23 22 21 20 19 18 17 1 G5

CuU3 | CUZ2 | CUL | CUOD () RE 0 BEV [T5 PE | CM | PZ | SwC | IsC

1M i kKUo | TEo | KUp | IEp | KUc | 1Ec

Figure 3.2. Fields in status register (SR)

« CUO-3
— Enable access to coprocessors (1 = enable)

« CUO never enabled for user mode

— Always accessible in kernel-mode regardless of setting
« CU1 is floating point unit (if present, FPU not in sys161)
 CU2-3 reserved

JBL) THE UNIVERSITY OF 29

cO status

31 30 29 28 27 20 25 24 &3 &l 21 20 19 15 17 | &
CU3 | CcuU2Z | CUL | CUD 0 RE (0 BEV| TS | PE | CM | PZ | SwC| IsC
15 8 7 § 5 1 3 2 1 0
IM 0 KUo | IEo | KUp | IEp | KUc | IEc
Figure 3.2. Fields in status register (SR)
- RE
— Reverse endian
- BEV
— Boot exception vectors
» 1 =use ROM exception vectors
* 0 = use RAM exception vectors
« TS
— TLB shutdown (1 = duplicate entry, need a hardware reset)
THE UNIVERSITY OF 30

cO

St

at

US

27 26 25 24 24 L 21 210 15 18 17 | &5
cu3 | cuz | cul | cuo 0 RE 0 BEV| TS | PE | CM | PZ | swC| IsC
15 8 T § 5 4 3 2 1 0

M 0 KUo | IEo | KUp | IEp | KUc | IEc
Figure 3.2. Fields in status register (SR)
 PE « SWC
— Parity error in cache — Access instruction cache
e CM as data
— Cache management * IsC
. P7 — Isolate data cache

— Cache parity zero

31

cO cause
31 S0 25 28 27 | &5 | 5 < T B & < | O
I 0 ExcCode (]

L]

| BD |[] CE

Figure 3.3. Fields in the Cause register

« BD
— |If set, the instruction
that caused the
exception was in a
branch delay slot

. IP
— Interrupts pending

« 8 bits indicating current
state of interrupt lines

« CE
— Coprocessor error « ExcCode
« Attempt to access — The code number of
disabled Copro. the exception taken

32

gL THE UNIVERSITY OF

B NEW SOUTH WALES

Exception Codes

ExcCode | Mnemonic Description
Value

0 Int [nterrupt

1 Mod “TLE modification”

2 TLEL "TLE load/TLE store”

3 TLES

g AdEL Address error (on load/1-letch or store respectively).

— — Fither an attempt to access outside kuseg when in user

. AdES mode, or an attempt to read a word or half-word at a
misaligned address.

Table 3.2. ExcCode values: different Kinds of exceptions

B THE UNIVERSITY OF 33

Exception Codes

ExcCode | Mnemonic Description
Value
§ IBE hus error (instruction letch or data load, respectively).
— Fxcternal hardware has signalled an error of some Kind;

7 DBE proper exception handling is system-dependent. The
R30xx lamily CPUs can't take a bus error on a store;
the write bulTer would make such an exception
imprecise”.

B Syscall Generated unconditionally by a syscall instruction.

9 Bp sreakpoint - a break instruction.

10 R ‘reserved instruction”

11 CpU "Co-Processor unusable”

12 Owv “arithmetic overflow”. Note that "unsigned” versions of
instructions (e.g. addu) never cause this exception.

13-31] - reserved. Some are already defined for MIPS CPUs such
as the R6000 and R4xxx

Table 3.2. ExcCode values: different kinds of exceptions

THE UNIVERSITY OF
NEW SOUTH WALES

34

cO_epc c0_epc

BD =0
* The Exception Program nop
Counter sw r3 (r4)

— Points to address of where nop
to restart execution after
handling the exception or
interrupt cO0 _epc
— BD-bitin cO_cause is used
on rare occasions when nop BD =1
one needs to identify the
actual exception-causing
instruction sw r3 (r4)

— Example nop

e Assume sw r3, (r4)

causes a page fault
exception

J printf

&=

=B THE UNIVERSITY OF 35

cO badvaddr

 The address access that caused the
exception
— Set if exception is
« MMU related

» Access to kernel space from user-mode

« Unaligned memory access
— 4-byte words must be aligned on a 4-byte boundary

THE UNIVERSITY OF 36

Exception Vectors

Program “segment” Physical Description
address Address
0x8000 0000 KksegO 0x0000 0000 TLE miss on kuseg reference only.
0x8000 0080 Kksegl 0x0000 0080 All other exceptions.
Oxbfel 0100 ksegl 0x1lfe0 0100 Uncached alternative kuseg TLE
miss entry point (used il SK bit
BEV set).
Oxbfel 0180 ksegl 0x1lfed 0180 Uncached alternative [or all other

exceptions, used il SR bit BEV set).
Oxbfel 0000 Kksegl 0x1fcd 0000 The "reset exception’.

Table 4.1. Reset and exception entry points (vectors) for R30xx family

37

Hardware exception handling
PC EPC

. Let's now walk Cause

through an exception

— Assume an interrupt
occurred as the
previous instruction
completed

— Note: We are in user Badvaddr
mode with interrupts
enabled

Status KUo IEo KUp IEp KUc IEc

Hardware exception handling
PC EPC

Cause

e Instruction address at Status KUo IEo KUp IEp KUc IEc
which to restart after

the interrupt is
transferred to EPC

Badvaddr

SR THE UNIVERSITY OF
NEW SOUTH WALES

Hardware exception handling

Interrupts
disabled
and previous
state shifted
alon

Status KUo IEo KUp IEp K

Kernel Mode is
set, and
previous mode
shifted along

Badvaddr

SBL| THE UNIVERSITY OF 40

Hardware exception handling

PC

EPC

Code for the
exception placed in
Cause. Note
Interrupt code =0

INLVV ONJUTTI

Cause

_ Status o KUp IEp KUc IEc

Badvaddr

Hardware exception handling
PC

EPC

Cause

Tl

= IEo KUp IEp KUc IEc

Address of general
exception vector
placed in PC

Hardware exception handling
PC EPC

CPU is now running in Cause
kernel mode at

0x80000080, with
interrupts disabled

All information required to

— Find out what caused the
exception

— Restart after exception Badvaddr
handling

IS In coprocessor

registers

Status KUo IEo KUp IEp KUc IEc

|
S

Returning from an exception

* For now, lets ignore
— how the exception is actually handled
— how user-level registers are preserved

» Let's simply look at how we return from the
exception

L
- ,fg{», THE UNIVERSITY OF 44

Returning from an exception
PC EPC

e This code to returnis Cause

Status KUo IEo KUp IEp KUc IEc

1w r27, saved epc

nop
1 £277 L oad the contents of
J EPC which is usually
rfe

Bad] saved somewhere when
the exception was
originally taken

s
[[Ees
S

45

Returning from an exception
PC EPC

e This code to returnis Cause

1w r27, saved epc Qtatic Ko lEA KU [Ep KUc IEc
nop |
jr r2—

rfe

Store the EPC back in
the PC

[scattn:
[
S

46

Returning from an exception

PC
In the branch delay slot,
execute a restore from

* This code to returl exception instruction

lw r27, saved e tatus KUo IEo KUp IEp KUc IEc

nop
T - [efelelel]e

rfe Badvaddr U I

47

[
L

Returning from an exception
PC EPC

« We are now back in the Cause
same state we were in
when the exception

happened Status KUo IEo KUp IEp KUc IEc

Badvaddr

Function Stack Frames
Stack

 Each function call
allocates a new .
stack frame for local
variables, the return Stack |

: Pointer
address, previous
frame pointer etc.

 Example: assume
f1() calls f2(), which
calls 3().

B THE UNIVERSITY OF 49

NEW SOUTH WALES

Function Stack Frames
Stack

 Each function call
allocates a new
stack frame for local
variables, the return
address, previous

frame pointer etc. Stack

« Example: assume Pointer —
f1() calls f2(), which
calls 3().

L] THE UNIVERSITY OF >0

NEW SOUTH WALES

Function Stack Frames
Stack

 Each function call
allocates a new
stack frame for local
variables, the return
address, previous
frame pointer etc.

 Example: assume
f1() calls f2(), which
calls f3(). e

SR THE UNIVERSITY OF >

NEW SOUTH WALES

Software Register Conventions

* Given 32 registers, which registers are
used for

— Local variables?

— Argument passing?
— Function call results?
— Stack Pointer?

E=
sl 1 HE UNIVERSITY OF 52

Software Register Conventions

Reg No | Name Used for

0 Zero Always returns O

1 at ([Aassembler temporary) Reserved [or use by assembler

2-3 vO-vl | Value (except FP) returned by subroutine

4-7 al-a3 | (arguments) First [our parameters [or a subroutine

B-15 t0-17 | (temporaries) subroutines may use without saving
[5-19

Subroutine “register variables™ a subroutine which will write
one of these must save the old value and restore it before it
exits, so the calling routine sees their values preserved.

Keserved for use by interrupt/trap handler - may change
under vour [eel

global pointer - some runtime systems maintain this to give
PASY ACCess Lo (some) “static” or "extern” variables.

stack pointer

9th register variable. Subroutines which need one can use
this as a "frame pointer”.

Feturn address for subroutine

Stack Frame

argument 5

. M I PS Cal I I ng ” _ arg.um enis 1-4 meanw
convention for

saved regisiers addressges

— Args 1-4 have
space
reserved for
them

local variables

d'.rn.amir.: area

$sp -~

B THE UNIVERSITY OF >4

i f::\a- NEW SOUTH WALES

Example Code

main () int sixargs(int a, int b,
{ int ¢, int 4, int e,
int i; int f)
{
i = return a + b + ¢ + d
sixargs(1,2,3,4,5,6); + e+ £
} }
THE UNIVERSITY OF 55

0040011c <main>:

40011c: 27bdf£d8
400120: afbf0024
400124: afbe0020
400128: 03a0f021
40012c: 24020005
400130: afa20010
400134: 24020006
400138: afa20014
40013c: 24040001
400140: 24050002
400144: 24060003
400148: 0c10002c
40014c: 24070004
400150: afc20018
400154 03c0e821
400158: 8fbf0024
40015c: 8£fbe0020
400160: 03e00008
400164: 27bd0028

addiu
SW

SW
move
1li

SW

1i

SW

1i

1li

1i
jal
1i

SW
move
1w

1w

jr
addiu

sp,sp,-40
ra, 36 (sp)
s8,32 (sp)
s8,sp
v0,5
v0,16 (sp)
v0, 6
v0,20 (sp)
a0,1

al,2

a2,3
4000b0 <sixargs>
a3,4
v0,24 (s8)
sp,s8
ra, 36 (sp)
s8,32 (sp)
ra
sp,sp, 40

56

004000b0 <sixargs>:

4000b0:
4000b4:
4000b8:
4000bc:
4000c0:
4000c4:
4000c8:
4000cc:
400040:
4000d4:
4000d8:
4000dc:
4000e0:
4000e4:
4000e8:
4000ec:
4000£0:
4000£4:
4000£8:

27bdf£f£f8
afbe0000
03a0£f021
afc40008
afc5000c
afc60010
afc70014
8£c30008
8£c2000c
00000000
00621021
8£c30010
00000000
00431021
8£c30014
00000000
00431021
8£c30018
00000000

addiu
SW
move
SW
SW
SW
SW
1w
1w
nop
addu
1w
nop
addu
1w
nop
addu
1w
nop

sp,sp, -8
s8,0 (sp)
s8,sp

a0,8(s8)
al,12(s8)
a2,16(s8)
a3,20(s8)
v1l,8(s8)
v0,12 (s8)

v0,vl,vO0
vl,16(s8)

vO,v0,vl
v1l,20(s8)

v0,v0,vl
v1l,24 (s8)

Y

T THE UNIVERSITY OF
@il NFW SOUTH WALES

b

4000fc:
400100:
400104:
400108:
40010c:
400110:
400114:
400118:

00431021
8£fc3001c
00000000
00431021
03c0e821
8£fbe0000
03e00008
27bd0008

addu
1w
nop
addu
move
1w

jr
addiu

v0,v0,vl
v1l,28(s8)

v0,v0,vl
sp,s8
s8,0 (sp)
ra

sp,sp,8

58

System Calls

Continued

59

User and Kernel Execution

« Simplistically, execution state consists of
— Registers, processor mode, PC, SP

» User applications and the kernel have their
own execution state.

« System call mechanism safely transfers
from user execution to kernel execution
and back.

=5
== | HE UNIVERSITY OF 60

System Call Mechanism in
Principle

* Processor mode

— Switched from user-mode to kernel-mode
« Switched back when returning to user mode

. SP

— User-level SP is saved and a kernel SP is initialised
» User-level SP restored when returning to user-mode

.+ PC
— User-level PC is saved and PC set to kernel entry
point
» User-level PC restored when returning to user-level

— Kernel entry via the designated entry point must be
strictly enforced

=2
LI THE UNIVERSITY OF 61
NEW SOUTH WALES

System Call Mechanism in

Principle
* Registers
— Set at user-level to indicate system call type and its
arguments

« A convention between applications and the kernel

— Some registers are preserved at user-level or kernel-
level in order to restart user-level execution
* Depends on language calling convention etc.
— Result of system call placed in registers when
returning to user-level
* Another convention

=
L] THE UNIVERSITY OF 62
NEW SOUTH WALES

Why do we need system calls?

* Why not simply jump into the kernel via a
function call????

— Function calls do not

» Change from user to kernel mode
— and eventually back again

 Restrict possible entry points to secure locations

THE UNIVERSITY OF 63

Steps in Making a System Call

Address
OxFFFFFFFF _

Return to caller] ,
T o K I Library
rap to the kerne procedure
5| Put code for read in register read
10
4
u e
REF SEEES < Increment SP 11
~ Call read
3| Pushfd User program
2| Push &buffer calling read
1| Push nbytes
6 9
—
8 7
A
Kernel space . 7 8 [Syscall
(Operating system) < Hispaich - “| handler
-

There are 11 steps in making the system call
read (fd, buffer, nbytes)

VY NI VYL

MIPS System Calls

« System calls are invoked via a syscall
instruction.

— The syscall instruction causes an exception and
transfers control to the general exception handler

— A convention (an agreement between the kernel and
applications) is required as to how user-level software
iIndicates

* Which system call is required
* Where its arguments are
* Where the result should go

65

0S/161 Systems Calls

* OS/161 uses the following conventions

— Arguments are passed and returned via the
normal C function calling convention

— Additionally

« Reg v0 contains the system call number

* On return, reg a3 contains
— 0: if success, vO contains successful result
— not O: if failure, vO has the errno.
» vO stored in errno
» -1 returned in vO

THE UNIVERSITY OF 66

» Seriously low-
level code follows

 This code is not
for the faint
hearted

SBL| THE UNIVERSITY OF 67

User-Level System Call Walk
Through

int read(int filehandle, void *buffer, size t size)
* Three argumentz, one return value
« Code fragment caliing the read iunction

400124
400128
40012c:
400130:
400134
400138:

02602021
27a50010
0cl001a3
24060400
00408021
1a000016

move
addiu
jal
1i
move
blez

al0,s3

al,sp,16

40068c <read>

a2,1024

sO,vO0

s0,400194 <docat+0x94>

* Args are loaded, return value is tested

&=
Ll THE UNIVERSITY OF
NEW SOUTH WALES

68

The read() syscall function
part 1

0040068c <read>:
40068c: 08100190 3 400640 < syscall>
400690: 24020005 11 v0,5

» Appropriate registers are preserved
— Arguments (a0-a3), return address (ra), etc.
* The syscall number (5) is loaded into vO

* Jump (not jump and link) to the common
syscall routine

1 THE UNIVERSITY OF 69
NEW SOUTH WALES

The read() sysc
part

00400640 < syscall>:
400640:
400644:
400648:
40064c:
400650:
400654:
400658:
40065c:
400660:

&=

0000000c
10e00005
00000000
3c011000
ac220000
2403ffff
2402ffff
03e00008
00000000

L] THE UNIVERSITY OF
NEW SOUTH WALES

Generate a syscall
exception

syscall

beqz a3,40065c < syscall+0xlc>
nop

lui at,0x1000

SW v0,0 (at)

1li vl, -1

1li v0,-1

jr ra

nop

70

The read() syscall functi
part 2

00400640 < syscall>:
400640:
400644:
400648:
40064c:
400650:
400654:
400658:
40065c:
400660:

==

0000000c
10e00005
00000000
3c011000
ac220000
2403ffff
2402ffff
03e00008
00000000

™ THE UNIVERSITY OF
NEW SOUTH WALES

Test success, if
yes, branch to
return from function

syscall

beqz a3,40065¢c « syscall+Oxlc>
nop

lui at,0x1000

SW v0,0 (at)

1li vl, -1

1li v0,-1

jr ra

nop

71

The read() syscall function
part 2

00400640 < syscall>:
400640: 0000000c syscall
400644: 10e00005 beqz a3,40065c
400648: 00000000 nop
40064c: 3c011000 lui at,0x1000
400650: ac220000 SW v0,0 (at)
400654 : 2403ffff 1i vl, -1
400658: 2402ffff 1i v0,-1
40065c: 03e00008 jr ra
400660 00000000 nop

=a
[
biL

1 THE UNIVERSITY OF 72
NEW SOUTH WALES

The read() syscall function
part 2

00400640 < syscall>:
400640: 0000000c syscall
400644: 10e00005 beqz a3,40065c
400648: 00000000 nop
40064c: 3c011000 lui at,0x1000
400650: ac220000 SW v0,0 (at
400654 2403ffff 1i vl, -1
400658: 2402ffff 1i v0,-1
40065c: 03e00008 jr ra
400660: 00000000 nop

=a
[
biL

1 THE UNIVERSITY OF 73
NEW SOUTH WALES

The read() syscall function
part 2

Return to location
after where read()
was called

00400640 < syscall>:
400640: 0000000c syscall
400644: 10e00005 beqz a3,40065c
400648: 00000000 nop
40064c: 3c011000 lui at,0x1000
400650: ac220000 SW v0,0 (at)
400654 2403ffff 1i vl, -1
400658: 2402ffff 1i v0, -
40065c: 03e00008 jr ra
400660: 00000000 nop

B2
Ll THE UNIVERSITY OF 74
NEW SOUTH WALES

Summary

* From the caller’s perspective, the read() system
call behaves like a normal function call
— It preserves the calling convention of the language

 However, the actual function implements its own
convention by agreement with the kernel
— Our OS/161 example assumes the kernel preserves
appropriate registers(s0-s8, sp, gp, ra).
* Most languages have similar support libraries
that interface with the operating system.

= T UNIVERSITY OF 75

B NEW SOUTH WALES

System Calls - Kernel Side

* Things left to do

— Change to kernel stack
— Preserve registers by saving to memory (the stack)

— Leave saved registers somewhere accessible to
 Read arguments
» Store return values

— Do the “read()”

— Restore registers

— Switch back to user stack
— Return to application

76

exception:
move kl, sp
mfcO0 kO, cO0_s
andi kO, kO, CST?
beq k0, $0, 1f /*
nop

/* Save previous stack pointer in k1l */

/* Get status register */
/* Check the we-were-in-user-mode bit */
ar, from kernel, already have stack */
* delay slot */

/* Coming from user mode
la kO, curkstack
lw sp, 0(kO)

to sp */
rkstack" */
lue */

nop load */
1:
mfcO0 kO, cO0 _cause /* N ause. */
j common exception e */
nop
BN e UNIVERSITY OF 77

8

NEW SOUTH WALES

exception:
move kl, sp /* Save previous stack pointer in k1l */
mfcO0 kO, cO_status /* Get status register */
andi kO, kO, CST Kup /* Check the we-were-in-user-mode bit */
beq k0, $0, 1f /* If clear, from kernel, already have stack */
nop /* delay slot */

/* Coming from user mode - load kernel stack into sp */

la k0, curkstack /* get address of "curkstack" */
lw sp, 0(kO0) /* get its value */
nop /* delay slot for the load */
1:
mfcO0 kO, cO _cause /* Now, load the exception cause. */
j common exception /* Skip to common code */
nop /* delay slot */

THE UNIVERSITY OF 78
NEW SOUTH WALES

common exception:

/*
* At this point:
* Interrupts are off. (The processor did this for us.)
* kO contains the exception cause value.
* kl contains the old stack pointer.
* sp points into the kernel stack.
* All other registers are untouched.
*/
/*

* Allocate stack space for 37 words to hold the trap frame,
* plus four more words for a minimal argument block.
*/

addi sp, sp, -164

=
> |l
0

THE UNIVERSITY OF 79
NEW SOUTH WALES

/* The order here must match mips/include/trapframe.h. */

sw ra, 160 (sp) /* dummy for gdb */

sw s8, 156 (sp) /* save s8 */

sw sp, 152 (sp) /* dummy for gdb */

sw gp, 148 (sp) /* save gp */

sw k1, 144 (sp) /* dummy for gdb */

sw kO, 140 (sp) /* dummy for gdb */

sw k1, 152 (sp) /* real saved sp */

nop /* delay slot for store */

mfcO0 k1, cO_epc /* Copr.0 reg 13 == PC for
sw k1, 160 (sp) /* real saved PC */

=z

[
L

Ol THE UNIVERSITY OF 80
NEW SOUTH WALES

/* The order here must match mips/include/trapframe.h. */

sw ra, 160 (sp) /* dummy for gdb */ //i;h | K st r{\\\
sw s8, 156 (sp) /* save s8 */ € real work starts
sw sp, 152 (sp) /* dummy for gdb */ here
sw gp, 148 (sp) /* save gp */ -
sw k1, 144 (sp) /* dummy for gdb */
sw kO, 140 (sp) /* dummy for gdb */
sw k1, 152 (sp) /* real saved sp */
nop /* delay slot for store */
mfcO0 k1, cO0_epc /* Copr.0 reg 13 == PC for exception */
sw k1, 160 (sp) /* real saved PC */
L THE UNIVERSITY OF 81
gl NEW SOUTH WALES

B

sw t9, 136 (sp)
sw t8, 132 (sp)
sw s7, 128 (sp)
sw s6, 124 (sp)
sw s5, 120 (sp)
sw s4, 116 (sp)
sw s3, 112 (sp)
sw s2, 108 (sp)
sw sl1, 104 (sp)
sw s0, 100 (sp)
sw t7, 96(sp)
sw t6, 92 (sp)
sw t5, 88(sp)
sw t4, 84 (sp)
sw t3, 80 (sp)
sw t2, 76 (sp)
sw t1, 72 (sp)
sw t0, 68 (sp)
sw a3, 64 (sp)
sw a2, 60 (sp)
sw al, 56(sp)
sw a0, 52(sp)
sw vl, 48(sp)
sw v0, 44 (sp)
sw AT, 40 (sp)
sw ra, 36(sp)

1 THE UNIVERSITY OF 82
NEW SOUTH WALES

=z

[Tp5

S

/*
* Save special registers.
*/

mfhi tO0

mflo tl

sw t0, 32(sp)

sw t1, 28 (sp)

/*
* Save remaining exception context information.
*/
sSW k0, 24 (sp) /* kO was loaded with cause earlier */
mfcO0 tl, cO_status /* Copr.0 reg 11 == status */
SwW tl, 20(sp)
mfcO0 t2, cO0 vaddr /* Copr.0 reg 8 == faulting vaddr */

SwW t2, 16(sp)

/*

* Pretend to save $0 for gdb's benefit.
*/

sw $0, 12(sp)

==
[
S

1 THE UNIVERSITY OF 83
NEW SOUTH WALES

/*

* Prepare to call mips trap(struct trapframe *)

*/
addiu a0, sp, 16 /* set argument */
jal mips_trap /* call it */
nop /* delay slot */
-m- THE UNIVERSITY OF 84

8

NEW SOUTH WALES

struct trapframe ({
u_int32_t tf vaddr; /* vaddr register */ Kernel StaCk
u_int32_t tf_ status; /* status register */
u_int32 t tf cause; /* cause register */

u_int32 t tf lo;
u_int32 t tf hi;
u_int32 t tf ra;/* Saved register 31 */
u_int32 t tf_at;/* Saved register 1 (AT) */
u_int32 t tf v0;/* Saved register 2 (v0) */
u_int32 t tf vl;/* etc. */

u_int32 t tf_al;
u_int32 t tf al;
u_int32 t tf a2;
u_int32 t tf a3;
u_int32 t tf tO0;

u_int32_t tf t7;
u_int32 t tf sO;

u_int32 t tf s7;
u_int32 t tf t8;
u_int32 t tf t9;
u_int32 t tf kO;/* dummy (see exception.S commen
u_int32 t tf kl1;/* dummy */

u_int32 t tf gp;

u_int32 t tf sp;

u_int32 t tf_ s8;

u_int32 t tf epc; /* coprocessor 0 epc register

=

%S

. Now we arrive in the ‘C’ kernel

* General trap (exception) handling function for mips.
* This is called by the assembly-language exception handler once
* the trapframe has been set up.
*/
void
mips trap(struct trapframe *tf)
{
u_int32 t code, isutlb, iskern;
int savespl;

/* The trap frame is supposed to be 37 registers long. */
assert(sizeof (struct trapframe)==(37*4)) ;

/* Save the value of curspl, which belongs to the old context. */
savespl = curspl;

/* Right now, interrupts should be off. */
curspl = SPL HIGH;

N??? THE UNIVERSITY OF 86

What happens next?

 The kernel deals with whatever caused the
exception

— Syscall
— Interrupt
— Page fault

— It potentially modifies the trapframe, etc
« E.g., Store return code in vO, zero in a3

* ‘mips_trap’ eventually returns

0] THE UNIVERSITY OF 87
NEW SOUTH WALES

exception return:

/* 16 (sp) no need to restore tf vaddr */

lw t0, 20(sp) /* load status register value into t0 */

nop /* load delay slot */

mtcO t0, cO status /* store it back to coprocessor 0 */
/* 24 (sp) no need to restore tf cause */

/* restore special registers */
1w t1, 28(sp)

1w t0, 32(sp)

mtlo tl

mthi tO

/* load the general registers */
1w ra, 36(sp)

1w AT, 40 (sp)
1w v0, 44 (sp)
1w v1, 48 (sp)
1w a0, 52 (sp)
1w al, 56 (sp)
1w a2, 60 (sp)
1w a3, 64 (sp)

1w t0, 68 (sp)
1w t1, 72 (sp)
1w t2, 76 (sp)
1w t3, 80 (sp)
1w t4, 84 (sp)
1w t5, 88 (sp)
1w t6, 92 (sp)
1w t7, 96 (sp)
1w s0, 100 (sp)
1w s1, 104 (sp)
1w s2, 108 (sp)
1w s3, 112 (sp)
1w s4, 116 (sp)
1w s5, 120 (sp)
1w s6, 124 (sp)
1w s7, 128 (sp)
1w t8, 132 (sp)
1w t9, 136 (sp)

/* 140 (sp) "saved" kO was dummy garbage anyway */
/* 144 (sp) "saved" kl was dummy garbage anyway */

THE UNIVERSITY OF
NEW SOUTH WALES

lw gp, 148 (sp) /* restore gp */

/* 152 (sp) stack pointer - below */

lw s8, 156(sp) /* restore s8 */

lw k0, 160 (sp) /* fetch exception return PC into kO */
lw sp, 152 (sp) /* fetch saved sp (must be last) */

/* done */
jr kO /* jump back */
rfe /* in delay slot */

=z

[
L

Ol THE UNIVERSITY OF 90
NEW SOUTH WALES

