User-level Mutual Exclusion

THE UNIVERSITY OF
NEW SOUTH WALES

HE UNI
NEW SC

» Avoid needing locking by using lock-free
data structure
— Still need short atomic sequences

» Lock-based data structure also need
mutual exclusion to implement the lock

Lock-free?

* compare-and-swap

primitive themselves.

IVERSITY OF
DUTH WALES

ET

L

How do we provide efficient
mutual exclusion to kernel-
implemented threads at user-

* Interrupt disabling?

« Syscalls?
* Processor Instructions?

level

HE UNIVERSITY OF

L

THE
NEW SOUTH WALES

How does the OS know what is
an atomic sequence?

- Designated sequences
— Match well know sequences surrounding PC

» Matching takes time
sequence may occur outside an atomic sequences

— Rollback might break code

— Rollforward okay

= Sequences can be inlined
No overhead added to each sequence, overhead only on

interruption

HE UNIVERSITY OF
NEW SOUTH WALES

ET

L

Optimistic Approach

= Assume the critical code runs atomically

— Atomic Sequence
« If an interrupt occurs, OS recovers such that
atomicity is preserved
= Two basic mechanisms

— Rollback
= Only single memory location update

+ Guarantee progress???

— Rollforward

THE UNIVERSITY OF
NEW SOUTH WALES

« Static Registration
— All sequences are registered at program

startup
= No direct overhead to sequences themselves

« Limited number of sequences
— Reasonable to identify on interrupt

— No inlining

HE UNIVERSITY OF

kit
NEW SOUTH WALES

L

* Dynamic Registration
— Share a variable between kernel and user-
level, set it while in an atomic sequence

— Can inline, even synthesize sequences at
runtime

— Adds direct overhead to each sequence

THE UNIVERSITY OF
NEW SOUTH WALES

2 CSe

L

+ Cloning
— Two copies of each sequence
* normal copy

» modified copy that call back into interrupt
handler

= On interrupt, map PC in normal sequence into
PC in modified

= Mapping can be time consuming
— Inlining???

THE UNIVERSITY O

P
NEW SOUTH WALES

How to roll forward?

» Code re-writing
— Re-write instruction after sequence to call
back to interrupt handler

« Cache issues — need to flush the instruction
cache??

THE UNIVERSITY OF
NEW SOUTH WALES

2 CSe

« Computed Jump

— Every sequence uses a computed jump at
the end
= Normal sequence simply jmp to next instruction
« Interrupted sequence jumps to interrupt handler
» Adds a jump to every sequence

 Controlled fault
— Dummy instruction at end of each
sequences
» NOP for normal case
« Fault for interrupt case
— Example is read from (in)accessible page
— Only good for user-kernel privilege
changes

— Still adds an extra instruction

UNIVERSITY O]

THE 3
NEW SOUTH WALES

THE UNIVERSITY OF
NEW SOUTH WALES

THE UNIVERSITY OF
NEW SOUTH WALES

Limiting Duration of Roll
forward
« Watchdog

« Restriction on code so termination can
be inspected for

CSe
Implementations - Dynamic Registration
Scheme With Jump
destAddr + addressOf (theEnd)
nAS + TRUE
(atomic sequence . . .)
nAS «+ FALSE
jump destAddr
theEnd:
* lda 1r4, inAs # load address of inAs
* lda rl, theEnd # load address of theEnd into rl
* stl zero, (r4) # inAS <- TRUE (0 = TRUE)
lda 1r3, sharedCounter # load address of sharedCounter
1d1 r2, (r3) # load value of sharedCounter
addl r2, 1, r2 # increment counter
stl r2, (r3) # store back new value
* stl rl, (r4) # reset inAS to FALSE (not 0 = FALSE)
* Jmp (rl) # jump to address stored in rl
theEnd:
CSe
Implementations - Dynamic Registration
Scheme With Fault
destAddr + addressOf (theEnd)
nAS « TRUE
(atomic sequence . . .)
jump destAddr
theEnd:
* lda rl, theEnd # load address of theEnd into rl
lda 1r3, sharedCounter # load address of sharedCounter
14l r2, (xr3) # load value of sharedCounter
addl r2, 1, r2 # increment counter
stl r2, (r3) # store back new value
* Jmp (r1) # jump to address stored in rl
theEnd:

THE UNIVERSITY OF
NEW SOUTH WALES

L

Implementations - Dynamic Registration
Scheme With Fault

destAddr + addressOf(theEnd)
nAS « TRUE
(atomic sequence.. ..)

theEnd: INAS « «falseOrFault

THE UNIVERSITY OF
NEW SOUTH WALES

L

THE L
NEW

Results

DEC Alpha HP PA-RISC 1.1
Technique NULL LIFO FIFO | NULL LIFO FIFO
sigprocmask 1682 3045 3363 1787 3578 3590
Dyn/Fault 13 27 24 12 24 27
Dyn/Jump 9 16 13 11 21 27
Hyb/Tump 6 5 6 5 8 12
DI 4 3 4 4 5 12
CIPL 4 5 6 14 24 29
splx 44 89 88 30 63 73
PALcode > 13 >13 >13 n/a n/a n/a
LL/STC na > 118 > 118 n/a n/a n/a

Table 1: Overheads of Different Atomicity Schemes in Cycles

