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UNIX File Management
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UNIX File Management

• We will focus on two types of files
– Ordinary files (stream of bytes)

– Directories

• And mostly ignore the others
– Character devices

– Block devices

– Named pipes

– Sockets

– Symbolic links
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UNIX index node (inode)

• Each file is represented by an Inode

• Inode contains all of a file’s metadata

– Access rights, owner,accounting info

– (partial) block index table of a file

• Each inode has a unique number (within a partition)

– System oriented name

– Try ‘ls –i’ on Unix (Linux)

• Directories map file names to inode numbers

– Map human-oriented to system-oriented names

– Mapping can be many-to-one

• Hard links
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Inode Contents

• Mode

– Type 

• Regular file or directory

– Access mode

• rwxrwxrwx

• Uid

– User ID

• Gid

– Group ID

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect
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Inode Contents

• atime

– Time of last access

• ctime

– Time when file was 
created

• mtime

– Time when file was 

last modified

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(10)

single indirect
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Inode Contents
• Size

– Size of the file in bytes

• Block count

– Number of disk blocks used by 
the file.

• Note that number of blocks can 
be much less than expected 
given the file size

– Files can be sparsely 
populated

• E.g. write(f,“hello”); lseek(f, 
1000000); write(f, “world”);

• Only needs to store the start 
an end of file, not all the 
empty blocks in between.

– Size = 1000005

– Blocks = 2 + overheads

mode
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Inode Contents
• Direct Blocks

– Block numbers of first 10 

blocks in the file

– Most files are small

• We can find blocks of file 

directly from the inode

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect

double indirect

triple indirect

0

3

2

56

0

1

7

4

7

63

5

6

Disk

8

9



8

Problem

• How do we store files greater than 10 
blocks in size?

– Adding significantly more direct entries in the 

inode results in many unused entries most of 

the time.
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Inode Contents
• Single Indirect Block

– Block number of a block 

containing block numbers

• In this case 8

mode
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mtime

size
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reference count
direct blocks (10)
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Single Indirection

• Requires two disk access to read

– One for the indirect block; one for the target block

• Max File Size

– In previous example

• 10 direct + 8 indirect = 18 block file

– A more realistic example

• Assume 1Kbyte block size, 4 byte block numbers

• 10 * 1K + 1K/4 * 1K = 266 Kbytes

• For large majority of files (< 266 K), only one or 

two accesses required to read any block in file.
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Inode Contents
• Double Indirect Block

– Block number of a block 

containing block numbers of 

blocks containing block 

numbers

• Triple Indirect

– Block number of a block 

containing block numbers of 

blocks containing block 

numbers of blocks containing 

block numbers ☺

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (10)
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single indirect: 32
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Unix Inode Block Addressing 

Scheme
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Max File Size

• Assume 4 bytes block numbers and 1K blocks

• The number of addressable blocks

– Direct Blocks = 12

– Single Indirect Blocks = 256 

– Double Indirect Blocks = 256 * 256 = 65536

– Triple Indirect Blocks = 256 * 256 * 256 = 16777216

• Max File Size

– 12 + 256 + 65536 + 16777216 = 16843020 = 16 GB
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Some Best and Worst Case 

Access Patterns
• To read 1 byte

– Best: 

• 1 access via direct block

– Worst: 

• 4 accesses via the triple indirect block

• To write 1 byte

– Best: 

• 1 write via direct block (with no previous content)

– Worst: 

• 4 reads (to get previous contents of block via triple indirect) + 
1 write (to write modified block back)
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Worst Case Access Patterns with 

Unallocated Indirect Blocks
• Worst to write 1 byte

– 4 writes (3 indirect blocks; 1 data)

– 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data) 

– 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1; 
write 1 data)

– 3 reads, 2 writes  (read 2, read-write 1; write 1 data)

• Worst to read 1 byte

– If reading writes an zero-filled block on disk

• Worst case is same as write 1 byte

– If not, worst-case depends on how deep is the current indirect 
block tree.
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Inode Summary

• The inode contains the on disk data associated with a 
file
– Contains mode, owner, and other bookkeeping

– Efficient random and sequential access via indexed allocation

– Small files (the majority of files) require only a single access

– Larger files require progressively more disk accesses for random
access

• Sequential access is still efficient

– Can support really large files via increasing levels of indirection
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Where/How are Inodes Stored

• System V Disk Layout (s5fs)
– Boot Block 

• contain code to bootstrap the OS

– Super Block
• Contains attributes of the file system itself

– e.g. size, number of inodes, start block of inode array, start of 
data block area,  free inode list, free data block list

– Inode Array

– Data blocks

Boot

Block

Super

Block

Inode

Array
Data Blocks
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Some problems with s5fs

• Inodes at start of disk; data blocks end
– Long seek times

• Must read inode before reading data blocks

• Only one superblock
– Corrupt the superblock and entire file system is lost

• Block allocation suboptimal
– Consecutive free block list created at FS format time

• Allocation and de-allocation eventually randomises the list 
resulting the random allocation

• Inodes allocated randomly
– Directory listing resulted in random inode access 

patterns
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Berkeley Fast Filesystem (FFS)

• Historically followed s5fs

– Addressed many limitations with s5fs

– Linux mostly similar, so we will focus on Linux
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The Linux Ext2 File System
• Second Extended Filesystem

– Evolved from Minix filesystem (via “Extended Filesystem”)

• Features

– Block size (1024, 2048, and 4096) configured at FS creation

– Pre-allocated inodes (max number also configured at FS 
creation)

– Block groups to increase locality of reference (from BSD 
FFS)

– Symbolic links < 60 characters stored within inode

• Main Problem: unclean unmount �e2fsck

– Ext3fs keeps a journal of (meta-data) updates

– Journal is a file where updated are logged

– Compatible with ext2fs
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Layout of an Ext2 Partition

• Disk divided into one or more partitions

• Partition:

– Reserved boot block,

– Collection of equally sized block groups

– All block groups have the same structure

Boot

Block

Block Group

0
….

Block Group

n
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Layout of a Block Group

• Replicated super block
– For e2fsck

• Group descriptors

• Bitmaps identify used inodes/blocks

• All block have the same number of data blocks
• Advantages of this structure:

– Replication simplifies recovery
– Proximity of inode tables and data blocks (reduces seek time)

Super

Block

Group

Descrip-
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Data
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Inode
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Data blocks

1 blk n blks 1 blk 1 blk m blks k blks
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Superblocks

• Size of the file system, block size and similar 
parameters

• Overall free inode and block counters

• Data indicating whether file system check is 
needed:
– Uncleanly unmounted

– Inconsistency
– Certain number of mounts since last check

– Certain time expired since last check

• Replicated to provide redundancy to add 
recoverability 
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Group Descriptors

• Location of the bitmaps

• Counter for free blocks and inodes in this 
group

• Number of directories in the group
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Performance considerations

• EXT2 optimisations

– Read-ahead for directories

• For directory searching 

– Block groups cluster related inodes and data blocks

– Pre-allocation of blocks on write (up to 8 blocks)

• 8 bits in bit tables

• Better contiguity when there are concurrent writes

• FFS optimisations

– Files within a directory in the same group
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Thus far…

• Inodes representing files laid out on disk.

• Inodes are referred to by number!!!

– How do users name files? By number?

– Try ls –i to see how useful inode numbers 

are….
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Ext2fs Directories

• Directories are files of a special type
– Consider it a file of special format, managed by the kernel, that 

uses most of the same machinery to implement it 

• Inodes, etc…

• Directories translate names to inode numbers

• Directory entries are of variable length

• Entries can be deleted in place
– inode = 0

– Add to length of previous entry

– use null terminated strings for names

inode rec_len name_len type name…
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Ext2fs Directories

• “f1” = inode 7

• “file2” = inode 43

• “f3” = inode 85

7

12

2

‘f’ ‘1’ 0 0

43

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

85

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0
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Ext2fs Directories

• Note that inodes
can have more 
than one name

– Called a Hard Link

– Inode (file) 7 has 

three names

• “f1” = inode 7

• “file2” = inode 7

• “f3” = inode 7

7

12

2

‘f’ ‘1’ 0 0

7

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0
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Inode Contents
• We can have many name for the same inode.

• When we delete a file by name, i.e. remove 
the directory entry (link), how does the file 
system know when to delete the underlying 
inode?

– Keep a reference count in the inode

• Adding a name (directory entry) increments the 

count

• Removing a name decrements the count

• If the reference count == 0, then we have no 

names for the inode (it is unreachable), we can 

delete the inode (underlying file or directory)

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect
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Ext2fs Directories

• Deleting a filename

– rm file2
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Ext2fs Directories

• Deleting a filename

– rm file2

• Adjust the record 

length to skip to next 

valid entry
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Kernel File-related Data 

Structures and Interfaces
• We have reviewed how files and 

directories are stored on disk

• We know the UNIX file system-call 
interface

– open, close, read, write, lseek,…..

• What is in between?
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What do we need to keep track 

of?
• File descriptors

– Each open file has a file descriptor

– Read/Write/lseek/…. use them to specify 
which file to operate on.

• File pointer
– Determines where in the file the next read or 

write is performed

• Mode
– Was the file opened read-only, etc….  
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An Option?

• Use inode numbers as file descriptors and 
add a file pointer to the inode

• Problems

– What happens when we concurrently open 

the same file twice?

• We should get two separate file descriptors and file 
pointers….
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An Option?

• Single global open 
file array

– fd is an index into 

the array

– Entries contain file 

pointer and pointer 

to an inode

fp

i-ptr

fd

inode
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Issues

• File descriptor 1 is 
stdout

– Stdout is 

• console for some 
processes

• A file for others

• Entry 1 needs to be 
different per 
process!

fp

i-ptr

fd

inode
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Per-process File Descriptor 

Array
• Each process has 

its own open file 
array

– Contains fp, i-ptr etc.

– Fd 1 can be any 

inode for each 

process (console, 

log file).

P1 fd

inode

fp

i-ptr

fp

i-ptr

P2 fd

inode
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Issue

• Fork
– Fork defines that the child 

shares the file pointer with 
the parent

• Dup2
– Also defines the file 

descriptors share the file 
pointer

• With per-process table, we 
can only have independent 
file pointers
– Even when accessing the 

same file

P1 fd

inode

fp

i-ptr

fp

i-ptr

P2 fd

inode
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Per-Process fd table with global 

open file table
• Per-process file descriptor 

array

– Contains pointers to open 
file table entry

• Open file table array

– Contain entries with a fp
and pointer to an inode.

• Provides

– Shared file pointers if 
required

– Independent file pointers 
if required

• Example:

– All three fds refer to the 
same file, two share a file 
pointer, one has an 
independent file pointer

P1 fd

inode

f-ptr

f-ptr

f-ptr
P2 fd

inode

fp

i-ptr

fp

i-ptr

Per-process 

File Descriptor 

Tables
Open File Table
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Per-Process fd table with global 

open file table
• Used by Linux and 

most other Unix 

operating systems

P1 fd

inode

f-ptr

f-ptr

f-ptr
P2 fd

inode

fp

i-ptr

fp

i-ptr

Per-process 

File Descriptor 

Tables
Open File Table
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Older Systems only had a single 

file system
• They had file system specific open, close, read, 

write, … calls.

• The open file table pointed to an in-memory 

representation of the inode

– inode format was specific to the file system used 
(s5fs, Berkley FFS, etc)

• However, modern systems need to support 

many file system types

– ISO9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs
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Supporting Multiple File 

Systems
• Alternatives

– Change the file system code to understand 
different file system types

• Prone to code bloat, complex, non-solution

– Provide a framework that separates file 
system independent and file system 
dependent code.

• Allows different file systems to be “plugged in”

• File descriptor, open file table and other parts of 
the kernel can be independent of underlying file 
system
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VFS 

architecture
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Virtual File System (VFS)

• Provides single system call interface for many file 
systems

– E.g., UFS, Ext2, XFS, DOS, ISO9660,…

• Transparent handling of network file systems

– E.g., NFS, AFS, CODA

• File-based interface to arbitrary device drivers (/dev)

• File-based interface to kernel data structures (/proc)

• Provides an indirection layer for system calls

– File operation table set up at file open time

– Points to actual handling code for particular type

– Further file operations redirected to those functions
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The file system independent code 

deals with vfs and vnodes

P1 fd

vnode

f-ptr

f-ptr

f-ptrP2 fd

fp

v-ptr

fp

v-ptr

Per-process 

File Descriptor 

Tables Open File Table

inode

File system 
dependent 

code
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VFS Interface
• Reference

– S.R. Kleiman., "Vnodes: An Architecture for Multiple File System 
Types in Sun Unix," USENIX Association: Summer Conference 
Proceedings, Atlanta, 1986 

– Linux and OS/161 differ slightly, but the principles are the same

• Two major data types
– vfs

• Represents all file system types

• Contains pointers to functions to manipulate each file system as a 
whole (e.g. mount, unmount)

– Form a standard interface to the file system

– vnode

• Represents a file (inode) in the underlying filesystem

• Points to the real inode

• Contains pointers to functions to manipulate files/inodes (e.g. open, 
close, read, write,…)
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A look at OS/161’s VFS 

The OS161’s file system type

Represents interface to a mounted filesystem

struct fs {

int (*fs_sync)(struct fs *);

const char   *(*fs_getvolname)(struct fs *);

struct vnode *(*fs_getroot)(struct fs *);

int (*fs_unmount)(struct fs *);

void *fs_data;

};

Force the 

filesystem to 

flush its content 

to disk

Retrieve the 

volume name

Retrieve the vnode

associates with the 

root of the 

filesystem

Unmount the filesystem

Note: mount called via 

function ptr passed to 
vfs_mount

Private file system 

specific date
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Vnode

struct vnode {

int vn_refcount; 

int vn_opencount;

struct lock *vn_countlock;      

struct fs *vn_fs; 

void *vn_data;                  

const struct vnode_ops *vn_ops;

};

Count the 

number of 

“references”

to this vnode

Number of 

times vnode

is currently 

open

Lock for mutual 

exclusive 

access to 

counts

Pointer to FS 

containing 

the vnode

Pointer to FS 

specific 

vnode data 

(e.g. inode)

Array of pointers 

to functions 

operating on 

vnodes
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Access Vnodes via Vnode Operations

P1 fd

vnode

f-ptr

f-ptr

f-ptrP2 fd

fp

v-ptr

fp

v-ptr

Open File Table

inode

Vnode Ops

Ext2fs_read

Ext2fs_write
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Vnode Ops
struct vnode_ops {

unsigned long vop_magic; /* should always be VOP_MAGIC */

int (*vop_open)(struct vnode *object, int flags_from_open);

int (*vop_close)(struct vnode *object);

int (*vop_reclaim)(struct vnode *vnode);

int (*vop_read)(struct vnode *file, struct uio *uio);

int (*vop_readlink)(struct vnode *link, struct uio *uio);

int (*vop_getdirentry)(struct vnode *dir, struct uio *uio);

int (*vop_write)(struct vnode *file, struct uio *uio);

int (*vop_ioctl)(struct vnode *object, int op, userptr_t data);

int (*vop_stat)(struct vnode *object, struct stat *statbuf);

int (*vop_gettype)(struct vnode *object, int *result);

int (*vop_tryseek)(struct vnode *object, off_t pos);

int (*vop_fsync)(struct vnode *object);

int (*vop_mmap)(struct vnode *file /* add stuff */);

int (*vop_truncate)(struct vnode *file, off_t len);

int (*vop_namefile)(struct vnode *file, struct uio *uio);
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Vnode Ops
int (*vop_creat)(struct vnode *dir, 

const char *name, int excl,

struct vnode **result);

int (*vop_symlink)(struct vnode *dir, 

const char *contents, const char *name);

int (*vop_mkdir)(struct vnode *parentdir, 

const char *name);

int (*vop_link)(struct vnode *dir, 

const char *name, struct vnode *file);

int (*vop_remove)(struct vnode *dir, 

const char *name);

int (*vop_rmdir)(struct vnode *dir,

const char *name);

int (*vop_rename)(struct vnode *vn1, const char *name1, 

struct vnode *vn2, const char *name2);

int (*vop_lookup)(struct vnode *dir, 

char *pathname, struct vnode **result);

int (*vop_lookparent)(struct vnode *dir,

char *pathname, struct vnode **result,

char *buf, size_t len);

};
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Vnode Ops
• Note that most operation are on vnodes. How do 

we operate on file names?

– Higher level API on names that uses the internal 

VOP_* functions
int vfs_open(char *path, int openflags, struct vnode **ret);

void vfs_close(struct vnode *vn);

int vfs_readlink(char *path, struct uio *data);

int vfs_symlink(const char *contents, char *path);

int vfs_mkdir(char *path);

int vfs_link(char *oldpath, char *newpath);

int vfs_remove(char *path);

int vfs_rmdir(char *path);

int vfs_rename(char *oldpath, char *newpath);

int vfs_chdir(char *path);

int vfs_getcwd(struct uio *buf);
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Example: OS/161 emufs vnode

ops 
/*

* Function table for emufs
files.

*/

static const struct vnode_ops
emufs_fileops = {

VOP_MAGIC, /* mark this a 
valid vnode ops table */

emufs_open,

emufs_close,

emufs_reclaim,

emufs_read,

NOTDIR,  /* readlink */

NOTDIR,  /* getdirentry */

emufs_write,

emufs_ioctl,

emufs_stat,

emufs_file_gettype,

emufs_tryseek,

emufs_fsync,

UNIMP,   /* mmap */

emufs_truncate,

NOTDIR,  /* namefile */

NOTDIR,  /* creat */

NOTDIR,  /* symlink */

NOTDIR,  /* mkdir */

NOTDIR,  /* link */

NOTDIR,  /* remove */

NOTDIR,  /* rmdir */

NOTDIR,  /* rename */

NOTDIR,  /* lookup */

NOTDIR,  /* lookparent */

};
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Buffer

Cache
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Buffer

• Buffer:

– Temporary storage used when transferring 

data between two entities 

• Especially when the entities work at different rates

• Or when the unit of transfer is incompatible

• Example: between application program and disk
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Buffering Disk Blocks
• Allow applications to work with 

arbitrarily sized region of a file

– Apps can still optimise for a 

particular block size
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Buffering Disk Blocks
• Writes can return immediately 

after copying to kernel buffer

– Avoids waiting until write to 

disk is complete

– Write is scheduled in the 

background
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Buffering Disk Blocks
• Can implement read-ahead by 

pre-loading next block on disk 
into kernel buffer

– Avoids having to wait until 

next read is issued
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Cache

• Cache:

– Fast storage used to temporarily hold data to 

speed up repeated access to the data

• Example: Main memory can cache disk blocks
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Caching Disk Blocks
• On access

– Before loading block from disk, 

check if it is in cache first

• Avoids disk accesses

• Can optimise for repeated access 
for single or several processes 
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Buffering and caching are 

related
• Data is read into buffer; extra cache copy 

would be wasteful

• After use, block should be put in cache

• Future access may hit cached copy 

• Cache utilises unused kernel memory 
space; may have to shrink
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Unix Buffer Cache

On read
– Hash the 

device#, block#

– Check if match in 
buffer cache

– Yes, simply use 
in-memory copy

– No, follow the 
collision chain

– If not found, we 
load block from 
disk into cache
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Replacement

• What happens when the buffer cache is full and 

we need to read another block into memory?

– We must choose an existing entry to replace

– Similar to page replacement policy

• Can use FIFO, Clock, LRU, etc.

• Except disk accesses are much less frequent and take longer 
than memory references, so LRU is possible

• However, is strict LRU what we want?

– What is different between paged data in RAM and file data in 

RAM?
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File System Consistency

• Paged data is not expected to survive 
crashes or power failures

• File data is expected to survive

• Strict LRU could keep critical data in 
memory forever if it is frequently used.



66

File System Consistency
• Generally, cached disk blocks are prioritised in 

terms of how critical they are to file system 
consistency
– Directory blocks, inode blocks if lost can corrupt the 

entire filesystem
• E.g. imagine losing the root directory

• These blocks are usually scheduled for immediate write to 
disk

– Data blocks if lost corrupt only the file that they are 
associated with

• These block are only scheduled for write back to disk 
periodically

• In UNIX, flushd (flush daemon) flushes all modified blocks to 
disk every 30 seconds
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File System Consistency
• Alternatively, use a write-through cache

– All modified blocks are written immediately to disk

– Generates much more disk traffic
• Temporary files written back

• Multiple updates not combined

– Used by DOS
• Gave okay consistency when

– Floppies were removed from drives

– Users were constantly resetting (or crashing) their machines

– Still used, e.g. USB storage devices


