
1

UNIX File Management

2

UNIX File Management

• We will focus on two types of files
– Ordinary files (stream of bytes)

– Directories

• And mostly ignore the others
– Character devices

– Block devices

– Named pipes

– Sockets

– Symbolic links

3

UNIX index node (inode)

• Each file is represented by an Inode

• Inode contains all of a file’s metadata

– Access rights, owner,accounting info

– (partial) block index table of a file

• Each inode has a unique number (within a partition)

– System oriented name

– Try ‘ls –i’ on Unix (Linux)

• Directories map file names to inode numbers

– Map human-oriented to system-oriented names

– Mapping can be many-to-one

• Hard links

4

Inode Contents

• Mode

– Type

• Regular file or directory

– Access mode

• rwxrwxrwx

• Uid

– User ID

• Gid

– Group ID

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

5

Inode Contents

• atime

– Time of last access

• ctime

– Time when file was
created

• mtime

– Time when file was

last modified

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

6

Inode Contents
• Size

– Size of the file in bytes

• Block count

– Number of disk blocks used by
the file.

• Note that number of blocks can
be much less than expected
given the file size

– Files can be sparsely
populated

• E.g. write(f,“hello”); lseek(f,
1000000); write(f, “world”);

• Only needs to store the start
an end of file, not all the
empty blocks in between.

– Size = 1000005

– Blocks = 2 + overheads

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

7

Inode Contents
• Direct Blocks

– Block numbers of first 10

blocks in the file

– Most files are small

• We can find blocks of file

directly from the inode

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect

double indirect

triple indirect

0

3

2

56

0

1

7

4

7

63

5

6

Disk

8

9

8

Problem

• How do we store files greater than 10
blocks in size?

– Adding significantly more direct entries in the

inode results in many unused entries most of

the time.

9

Inode Contents
• Single Indirect Block

– Block number of a block

containing block numbers

• In this case 8

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

Disk

0

3

2

SI

56

0

1

7

4

7

63

5

6

8

9

14

28

29

20

38

61

43

46

12

15

10

13

17

11

14

16

10

Single Indirection

• Requires two disk access to read

– One for the indirect block; one for the target block

• Max File Size

– In previous example

• 10 direct + 8 indirect = 18 block file

– A more realistic example

• Assume 1Kbyte block size, 4 byte block numbers

• 10 * 1K + 1K/4 * 1K = 266 Kbytes

• For large majority of files (< 266 K), only one or

two accesses required to read any block in file.

11

Inode Contents
• Double Indirect Block

– Block number of a block

containing block numbers of

blocks containing block

numbers

• Triple Indirect

– Block number of a block

containing block numbers of

blocks containing block

numbers of blocks containing

block numbers ☺

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

12

Unix Inode Block Addressing

Scheme

13

Max File Size

• Assume 4 bytes block numbers and 1K blocks

• The number of addressable blocks

– Direct Blocks = 12

– Single Indirect Blocks = 256

– Double Indirect Blocks = 256 * 256 = 65536

– Triple Indirect Blocks = 256 * 256 * 256 = 16777216

• Max File Size

– 12 + 256 + 65536 + 16777216 = 16843020 = 16 GB

14

Some Best and Worst Case

Access Patterns
• To read 1 byte

– Best:

• 1 access via direct block

– Worst:

• 4 accesses via the triple indirect block

• To write 1 byte

– Best:

• 1 write via direct block (with no previous content)

– Worst:

• 4 reads (to get previous contents of block via triple indirect) +
1 write (to write modified block back)

15

Worst Case Access Patterns with

Unallocated Indirect Blocks
• Worst to write 1 byte

– 4 writes (3 indirect blocks; 1 data)

– 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data)

– 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1;
write 1 data)

– 3 reads, 2 writes (read 2, read-write 1; write 1 data)

• Worst to read 1 byte

– If reading writes an zero-filled block on disk

• Worst case is same as write 1 byte

– If not, worst-case depends on how deep is the current indirect
block tree.

16

Inode Summary

• The inode contains the on disk data associated with a
file
– Contains mode, owner, and other bookkeeping

– Efficient random and sequential access via indexed allocation

– Small files (the majority of files) require only a single access

– Larger files require progressively more disk accesses for random
access

• Sequential access is still efficient

– Can support really large files via increasing levels of indirection

17

Where/How are Inodes Stored

• System V Disk Layout (s5fs)
– Boot Block

• contain code to bootstrap the OS

– Super Block
• Contains attributes of the file system itself

– e.g. size, number of inodes, start block of inode array, start of
data block area, free inode list, free data block list

– Inode Array

– Data blocks

Boot

Block

Super

Block

Inode

Array
Data Blocks

18

Some problems with s5fs

• Inodes at start of disk; data blocks end
– Long seek times

• Must read inode before reading data blocks

• Only one superblock
– Corrupt the superblock and entire file system is lost

• Block allocation suboptimal
– Consecutive free block list created at FS format time

• Allocation and de-allocation eventually randomises the list
resulting the random allocation

• Inodes allocated randomly
– Directory listing resulted in random inode access

patterns

19

Berkeley Fast Filesystem (FFS)

• Historically followed s5fs

– Addressed many limitations with s5fs

– Linux mostly similar, so we will focus on Linux

20

The Linux Ext2 File System
• Second Extended Filesystem

– Evolved from Minix filesystem (via “Extended Filesystem”)

• Features

– Block size (1024, 2048, and 4096) configured at FS creation

– Pre-allocated inodes (max number also configured at FS
creation)

– Block groups to increase locality of reference (from BSD
FFS)

– Symbolic links < 60 characters stored within inode

• Main Problem: unclean unmount �e2fsck

– Ext3fs keeps a journal of (meta-data) updates

– Journal is a file where updated are logged

– Compatible with ext2fs

21

Layout of an Ext2 Partition

• Disk divided into one or more partitions

• Partition:

– Reserved boot block,

– Collection of equally sized block groups

– All block groups have the same structure

Boot

Block

Block Group

0
….

Block Group

n

22

Layout of a Block Group

• Replicated super block
– For e2fsck

• Group descriptors

• Bitmaps identify used inodes/blocks

• All block have the same number of data blocks
• Advantages of this structure:

– Replication simplifies recovery
– Proximity of inode tables and data blocks (reduces seek time)

Super

Block

Group

Descrip-

tors

Data

Block

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

1 blk n blks 1 blk 1 blk m blks k blks

23

Superblocks

• Size of the file system, block size and similar
parameters

• Overall free inode and block counters

• Data indicating whether file system check is
needed:
– Uncleanly unmounted

– Inconsistency
– Certain number of mounts since last check

– Certain time expired since last check

• Replicated to provide redundancy to add
recoverability

24

Group Descriptors

• Location of the bitmaps

• Counter for free blocks and inodes in this
group

• Number of directories in the group

25

Performance considerations

• EXT2 optimisations

– Read-ahead for directories

• For directory searching

– Block groups cluster related inodes and data blocks

– Pre-allocation of blocks on write (up to 8 blocks)

• 8 bits in bit tables

• Better contiguity when there are concurrent writes

• FFS optimisations

– Files within a directory in the same group

26

Thus far…

• Inodes representing files laid out on disk.

• Inodes are referred to by number!!!

– How do users name files? By number?

– Try ls –i to see how useful inode numbers

are….

27

Ext2fs Directories

• Directories are files of a special type
– Consider it a file of special format, managed by the kernel, that

uses most of the same machinery to implement it

• Inodes, etc…

• Directories translate names to inode numbers

• Directory entries are of variable length

• Entries can be deleted in place
– inode = 0

– Add to length of previous entry

– use null terminated strings for names

inode rec_len name_len type name…

28

Ext2fs Directories

• “f1” = inode 7

• “file2” = inode 43

• “f3” = inode 85

7

12

2

‘f’ ‘1’ 0 0

43

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

85

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

29

Ext2fs Directories

• Note that inodes
can have more
than one name

– Called a Hard Link

– Inode (file) 7 has

three names

• “f1” = inode 7

• “file2” = inode 7

• “f3” = inode 7

7

12

2

‘f’ ‘1’ 0 0

7

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

30

Inode Contents
• We can have many name for the same inode.

• When we delete a file by name, i.e. remove
the directory entry (link), how does the file
system know when to delete the underlying
inode?

– Keep a reference count in the inode

• Adding a name (directory entry) increments the

count

• Removing a name decrements the count

• If the reference count == 0, then we have no

names for the inode (it is unreachable), we can

delete the inode (underlying file or directory)

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

31

Ext2fs Directories

• Deleting a filename

– rm file2

7

12

2

‘f’ ‘1’ 0 0

7

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

32

Ext2fs Directories

• Deleting a filename

– rm file2

• Adjust the record

length to skip to next

valid entry

7

32

2

‘f’ ‘1’ 0 0

7

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

33

Kernel File-related Data

Structures and Interfaces
• We have reviewed how files and

directories are stored on disk

• We know the UNIX file system-call
interface

– open, close, read, write, lseek,…..

• What is in between?

34

What do we need to keep track

of?
• File descriptors

– Each open file has a file descriptor

– Read/Write/lseek/…. use them to specify
which file to operate on.

• File pointer
– Determines where in the file the next read or

write is performed

• Mode
– Was the file opened read-only, etc….

35

An Option?

• Use inode numbers as file descriptors and
add a file pointer to the inode

• Problems

– What happens when we concurrently open

the same file twice?

• We should get two separate file descriptors and file
pointers….

36

An Option?

• Single global open
file array

– fd is an index into

the array

– Entries contain file

pointer and pointer

to an inode

fp

i-ptr

fd

inode

37

Issues

• File descriptor 1 is
stdout

– Stdout is

• console for some
processes

• A file for others

• Entry 1 needs to be
different per
process!

fp

i-ptr

fd

inode

38

Per-process File Descriptor

Array
• Each process has

its own open file
array

– Contains fp, i-ptr etc.

– Fd 1 can be any

inode for each

process (console,

log file).

P1 fd

inode

fp

i-ptr

fp

i-ptr

P2 fd

inode

39

Issue

• Fork
– Fork defines that the child

shares the file pointer with
the parent

• Dup2
– Also defines the file

descriptors share the file
pointer

• With per-process table, we
can only have independent
file pointers
– Even when accessing the

same file

P1 fd

inode

fp

i-ptr

fp

i-ptr

P2 fd

inode

40

Per-Process fd table with global

open file table
• Per-process file descriptor

array

– Contains pointers to open
file table entry

• Open file table array

– Contain entries with a fp
and pointer to an inode.

• Provides

– Shared file pointers if
required

– Independent file pointers
if required

• Example:

– All three fds refer to the
same file, two share a file
pointer, one has an
independent file pointer

P1 fd

inode

f-ptr

f-ptr

f-ptr
P2 fd

inode

fp

i-ptr

fp

i-ptr

Per-process

File Descriptor

Tables
Open File Table

41

Per-Process fd table with global

open file table
• Used by Linux and

most other Unix

operating systems

P1 fd

inode

f-ptr

f-ptr

f-ptr
P2 fd

inode

fp

i-ptr

fp

i-ptr

Per-process

File Descriptor

Tables
Open File Table

42

Older Systems only had a single

file system
• They had file system specific open, close, read,

write, … calls.

• The open file table pointed to an in-memory

representation of the inode

– inode format was specific to the file system used
(s5fs, Berkley FFS, etc)

• However, modern systems need to support

many file system types

– ISO9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs

43

Supporting Multiple File

Systems
• Alternatives

– Change the file system code to understand
different file system types

• Prone to code bloat, complex, non-solution

– Provide a framework that separates file
system independent and file system
dependent code.

• Allows different file systems to be “plugged in”

• File descriptor, open file table and other parts of
the kernel can be independent of underlying file
system

44

VFS

architecture

45

Virtual File System (VFS)

• Provides single system call interface for many file
systems

– E.g., UFS, Ext2, XFS, DOS, ISO9660,…

• Transparent handling of network file systems

– E.g., NFS, AFS, CODA

• File-based interface to arbitrary device drivers (/dev)

• File-based interface to kernel data structures (/proc)

• Provides an indirection layer for system calls

– File operation table set up at file open time

– Points to actual handling code for particular type

– Further file operations redirected to those functions

46

The file system independent code

deals with vfs and vnodes

P1 fd

vnode

f-ptr

f-ptr

f-ptrP2 fd

fp

v-ptr

fp

v-ptr

Per-process

File Descriptor

Tables Open File Table

inode

File system
dependent

code

47

VFS Interface
• Reference

– S.R. Kleiman., "Vnodes: An Architecture for Multiple File System
Types in Sun Unix," USENIX Association: Summer Conference
Proceedings, Atlanta, 1986

– Linux and OS/161 differ slightly, but the principles are the same

• Two major data types
– vfs

• Represents all file system types

• Contains pointers to functions to manipulate each file system as a
whole (e.g. mount, unmount)

– Form a standard interface to the file system

– vnode

• Represents a file (inode) in the underlying filesystem

• Points to the real inode

• Contains pointers to functions to manipulate files/inodes (e.g. open,
close, read, write,…)

48

A look at OS/161’s VFS

The OS161’s file system type

Represents interface to a mounted filesystem

struct fs {

int (*fs_sync)(struct fs *);

const char *(*fs_getvolname)(struct fs *);

struct vnode *(*fs_getroot)(struct fs *);

int (*fs_unmount)(struct fs *);

void *fs_data;

};

Force the

filesystem to

flush its content

to disk

Retrieve the

volume name

Retrieve the vnode

associates with the

root of the

filesystem

Unmount the filesystem

Note: mount called via

function ptr passed to
vfs_mount

Private file system

specific date

49

Vnode

struct vnode {

int vn_refcount;

int vn_opencount;

struct lock *vn_countlock;

struct fs *vn_fs;

void *vn_data;

const struct vnode_ops *vn_ops;

};

Count the

number of

“references”

to this vnode

Number of

times vnode

is currently

open

Lock for mutual

exclusive

access to

counts

Pointer to FS

containing

the vnode

Pointer to FS

specific

vnode data

(e.g. inode)

Array of pointers

to functions

operating on

vnodes

50

Access Vnodes via Vnode Operations

P1 fd

vnode

f-ptr

f-ptr

f-ptrP2 fd

fp

v-ptr

fp

v-ptr

Open File Table

inode

Vnode Ops

Ext2fs_read

Ext2fs_write

51

Vnode Ops
struct vnode_ops {

unsigned long vop_magic; /* should always be VOP_MAGIC */

int (*vop_open)(struct vnode *object, int flags_from_open);

int (*vop_close)(struct vnode *object);

int (*vop_reclaim)(struct vnode *vnode);

int (*vop_read)(struct vnode *file, struct uio *uio);

int (*vop_readlink)(struct vnode *link, struct uio *uio);

int (*vop_getdirentry)(struct vnode *dir, struct uio *uio);

int (*vop_write)(struct vnode *file, struct uio *uio);

int (*vop_ioctl)(struct vnode *object, int op, userptr_t data);

int (*vop_stat)(struct vnode *object, struct stat *statbuf);

int (*vop_gettype)(struct vnode *object, int *result);

int (*vop_tryseek)(struct vnode *object, off_t pos);

int (*vop_fsync)(struct vnode *object);

int (*vop_mmap)(struct vnode *file /* add stuff */);

int (*vop_truncate)(struct vnode *file, off_t len);

int (*vop_namefile)(struct vnode *file, struct uio *uio);

52

Vnode Ops
int (*vop_creat)(struct vnode *dir,

const char *name, int excl,

struct vnode **result);

int (*vop_symlink)(struct vnode *dir,

const char *contents, const char *name);

int (*vop_mkdir)(struct vnode *parentdir,

const char *name);

int (*vop_link)(struct vnode *dir,

const char *name, struct vnode *file);

int (*vop_remove)(struct vnode *dir,

const char *name);

int (*vop_rmdir)(struct vnode *dir,

const char *name);

int (*vop_rename)(struct vnode *vn1, const char *name1,

struct vnode *vn2, const char *name2);

int (*vop_lookup)(struct vnode *dir,

char *pathname, struct vnode **result);

int (*vop_lookparent)(struct vnode *dir,

char *pathname, struct vnode **result,

char *buf, size_t len);

};

53

Vnode Ops
• Note that most operation are on vnodes. How do

we operate on file names?

– Higher level API on names that uses the internal

VOP_* functions
int vfs_open(char *path, int openflags, struct vnode **ret);

void vfs_close(struct vnode *vn);

int vfs_readlink(char *path, struct uio *data);

int vfs_symlink(const char *contents, char *path);

int vfs_mkdir(char *path);

int vfs_link(char *oldpath, char *newpath);

int vfs_remove(char *path);

int vfs_rmdir(char *path);

int vfs_rename(char *oldpath, char *newpath);

int vfs_chdir(char *path);

int vfs_getcwd(struct uio *buf);

54

Example: OS/161 emufs vnode

ops
/*

* Function table for emufs
files.

*/

static const struct vnode_ops
emufs_fileops = {

VOP_MAGIC, /* mark this a
valid vnode ops table */

emufs_open,

emufs_close,

emufs_reclaim,

emufs_read,

NOTDIR, /* readlink */

NOTDIR, /* getdirentry */

emufs_write,

emufs_ioctl,

emufs_stat,

emufs_file_gettype,

emufs_tryseek,

emufs_fsync,

UNIMP, /* mmap */

emufs_truncate,

NOTDIR, /* namefile */

NOTDIR, /* creat */

NOTDIR, /* symlink */

NOTDIR, /* mkdir */

NOTDIR, /* link */

NOTDIR, /* remove */

NOTDIR, /* rmdir */

NOTDIR, /* rename */

NOTDIR, /* lookup */

NOTDIR, /* lookparent */

};

55

Buffer

Cache

56

Buffer

• Buffer:

– Temporary storage used when transferring

data between two entities

• Especially when the entities work at different rates

• Or when the unit of transfer is incompatible

• Example: between application program and disk

57

Buffering Disk Blocks
• Allow applications to work with

arbitrarily sized region of a file

– Apps can still optimise for a

particular block size

Disk

4

7

5

6

12

15

10

13

11

14

16

Buffers
in Kernel

RAM

Transfer of
whole
blocks

Application
Program

Transfer of

arbitrarily

sized regions

of file

58

Buffering Disk Blocks
• Writes can return immediately

after copying to kernel buffer

– Avoids waiting until write to

disk is complete

– Write is scheduled in the

background

Disk

4

7

5

6

12

15

10

13

11

14

16

Buffers
in Kernel

RAM

Transfer of
whole
blocks

Application
Program

Transfer of

arbitrarily

sized regions

of file

59

Buffering Disk Blocks
• Can implement read-ahead by

pre-loading next block on disk
into kernel buffer

– Avoids having to wait until

next read is issued

Disk

4

7

5

6

12

15

10

13

11

14

16

Buffers
in Kernel

RAM

Transfer of
whole
blocks

Application
Program

Transfer of

arbitrarily

sized regions

of file

60

Cache

• Cache:

– Fast storage used to temporarily hold data to

speed up repeated access to the data

• Example: Main memory can cache disk blocks

61

Caching Disk Blocks
• On access

– Before loading block from disk,

check if it is in cache first

• Avoids disk accesses

• Can optimise for repeated access
for single or several processes

Disk

4

7

5

6

12

15

10

13

11

14

16

Cached
blocks in

Kernel

RAM

Transfer of
whole
blocks

Application
Program

Transfer of

arbitrarily

sized regions

of file

62

Buffering and caching are

related
• Data is read into buffer; extra cache copy

would be wasteful

• After use, block should be put in cache

• Future access may hit cached copy

• Cache utilises unused kernel memory
space; may have to shrink

63

Unix Buffer Cache

On read
– Hash the

device#, block#

– Check if match in
buffer cache

– Yes, simply use
in-memory copy

– No, follow the
collision chain

– If not found, we
load block from
disk into cache

64

Replacement

• What happens when the buffer cache is full and

we need to read another block into memory?

– We must choose an existing entry to replace

– Similar to page replacement policy

• Can use FIFO, Clock, LRU, etc.

• Except disk accesses are much less frequent and take longer
than memory references, so LRU is possible

• However, is strict LRU what we want?

– What is different between paged data in RAM and file data in

RAM?

65

File System Consistency

• Paged data is not expected to survive
crashes or power failures

• File data is expected to survive

• Strict LRU could keep critical data in
memory forever if it is frequently used.

66

File System Consistency
• Generally, cached disk blocks are prioritised in

terms of how critical they are to file system
consistency
– Directory blocks, inode blocks if lost can corrupt the

entire filesystem
• E.g. imagine losing the root directory

• These blocks are usually scheduled for immediate write to
disk

– Data blocks if lost corrupt only the file that they are
associated with

• These block are only scheduled for write back to disk
periodically

• In UNIX, flushd (flush daemon) flushes all modified blocks to
disk every 30 seconds

67

File System Consistency
• Alternatively, use a write-through cache

– All modified blocks are written immediately to disk

– Generates much more disk traffic
• Temporary files written back

• Multiple updates not combined

– Used by DOS
• Gave okay consistency when

– Floppies were removed from drives

– Users were constantly resetting (or crashing) their machines

– Still used, e.g. USB storage devices

