
1

Concurrency and

Synchronisation

2

Textbook

• Sections 2.3 & 2.4

3

Making Single-Threaded Code Multithreaded

Conflicts between threads over the use of a
global variable

4

Inter- Thread and Process

Communication

Two processes want to access shared memory at same
time

We have a

race
condition

5

Critical Region

• We can control access to the shared
resource by controlling access to the code
that accesses the resource.

⇒ A critical region is a region of code where
shared resources are accessed.
– Variables, memory, files, etc…

• Uncoordinated entry to the critical region
results in a race condition
⇒ Incorrect behaviour, deadlock, lost work,…

6

Critical Regions

Mutual exclusion using critical regions

7

Example critical sections

struct node {

int data;

struct node *next;

};

struct node *head;

void init(void)

{

head = NULL;

}

• Simple last-in-first-out queue
implemented as a linked list.

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}

8

Example critical sections

struct node {

int data;

struct node *next;

};

struct node *head;

void init(void)

{

head = NULL;

}

• Critical sections

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}

9

Critical Regions

Also called critical sections

Conditions required of any solution to the critical
region problem

� Mutual Exclusion:
� No two processes simultaneously in critical region

� No assumptions made about speeds or numbers of
CPUs

� Progress
� No process running outside its critical region may block

another process

� Bounded
� No process must wait forever to enter its critical region

10

A solution?

• A lock variable

– If lock == 1,

• somebody is in the critical section and we must

wait

– If lock == 0,

• nobody is in the critical section and we are free to
enter

11

A solution?

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

12

A problematic execution

sequence
while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

13

Observation

• Unfortunately, it is usually easier to show
something does not work, than it is to
prove that it does work.

– Ideally, we’d like to prove, or at least

informally demonstrate, that our solutions

work.

14

Mutual Exclusion by Taking Turns

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

15

Mutual Exclusion by Taking Turns

• Works due to strict alternation

– Each process takes turns

• Cons

– Busy waiting

– Process must wait its turn even while the other

process is doing something else.

• With many processes, must wait for everyone to have a turn

– Does not guarantee progress if a process no longer needs a

turn.

• Poor solution when processes require the critical section at
differing rates

16

Peterson’s Solution

• See the textbook

17

Mutual Exclusion by Disabling

Interrupts
• Before entering a critical region, disable

interrupts

• After leaving the critical region, enable interrupts

• Pros
– simple

• Cons
– Only available in the kernel

– Blocks everybody else, even with no contention
• Slows interrupt response time

– Does not work on a multiprocessor

18

Hardware Support for mutual

exclusion
• Test and set instruction

– Can be used to implement lock variables correctly

• It loads the value of the lock

• If lock == 0,

– set the lock to 1

– return the result 0 – we acquire the lock

• If lock == 1

– return 1 – another thread/process has the lock

– Hardware guarantees that the instruction executes

atomically.

• Atomically: As an indivisible unit.

19

Mutual Exclusion with Test-and-Set

Entering and leaving a critical region using the

TSL instruction

20

Test-and-Set
• Pros

– Simple (easy to show it’s correct)

– Available at user-level
• To any number of processors

• To implement any number of lock variables

• Cons
– Busy waits (also termed a spin lock)

• Consumes CPU

• Livelock in the presence of priorities

– If a low priority process has the lock and a high priority process
attempts to get it, the high priority process will busy-wait
forever.

• Starvation is possible when a process leaves its critical
section and more than one process is waiting.

21

Tackling the Busy-Wait Problem

• Sleep / Wakeup

– The idea

• When process is waiting for an event, it calls sleep

to block, instead of busy waiting.

• The the event happens, the event generator

(another process) calls wakeup to unblock the
sleeping process.

22

The Producer-Consumer

Problem
• Also called the bounded buffer problem

• A producer produces data items and stores the
items in a buffer

• A consumer takes the items out of the buffer and
consumes them.

X X X

Producer

Consumer

23

Issues
• We must keep an accurate count of items in buffer

– Producer

• can sleep when the buffer is full,

• and wakeup when there is empty space in the buffer

– The consumer can call wakeup when it consumes the first entry of the

full buffer

– Consumer

• Can sleep when the buffer is empty

• And wake up when there are items available

– Producer can call wakeup when it adds the first item to the buffer

X X X

Producer

Consumer

24

Pseudo-code for producer and

consumer
int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

25

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

} Concurrent

uncontrolled

access to the

buffer

26

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

} Concurrent

uncontrolled

access to the

counter

27

Proposed Solution

• Lets use a locking primitive based on test-
and-set to protect the concurrent access

28

Proposed solution?

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

acquire_lock()

insert_item();

count++;

release_lock()

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep();

acquire_lock()

remove_item();

count--;

release_lock();

if (count == N-1)

wakeup(prod);

}

}

29

Problematic execution sequence

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

acquire_lock()

insert_item();

count++;

release_lock()

if (count == 1)

wakeup(con);

con() {

while(TRUE) {

if (count == 0)

sleep();

acquire_lock()

remove_item();

count--;

release_lock();

if (count == N-1)

wakeup(prod);

}

}

wakeup without a

matching sleep is

lost

30

Problem

• The test for some condition and actually
going to sleep needs to be atomic

• The following does not work
acquire_lock()

if (count == N)

sleep();

release_lock()

The lock is held while asleep ⇒ count will
never change

31

Semaphores

• Dijkstra (1965) introduced two primitives
that are more powerful than simple sleep
and wakeup alone.

– P(): proberen, from Dutch to test.

– V(): verhogen, from Dutch to increment.

– Also called wait & signal, down & up.

32

How do they work

• If a resource is not available, the corresponding
semaphore blocks any process waiting for the resource

• Blocked processes are put into a process queue
maintained by the semaphore (avoids busy waiting!)

• When a process releases a resource, it signals this by

means of the semaphore

• Signalling resumes a blocked process if there is any

• Wait and signal operations cannot be interrupted

• Complex coordination can be implemented by multiple

semaphores

33

Semaphore Implementation

• Define a semaphore as a record

typedef struct {

int count;
struct process *L;

} semaphore;

• Assume two simple operations:
– sleep suspends the process that invokes it.

– wakeup(P) resumes the execution of a blocked
process P.

34

• Semaphore operations now defined as

wait(S):
S.count--;

if (S.count < 0) {

add this process to S.L;
sleep;

}

signal(S):
S.count++;

if (S.count <= 0) {

remove a process P from S.L;
wakeup(P);

}

• Each primitive is atomic

35

Semaphore as a General

Synchronization Tool

• Execute B in Pj only after A executed in Pi

• Use semaphore count initialized to 0

• Code:

Pi Pj

M M

A wait(flag)

signal(flag) B

36

Semaphore Implementation of a

Mutex
• Mutex is short for Mutual Exclusion

– Can also be called a lock
semaphore mutex;

mutex.count = 1; /* initialise mutex */

wait(mutex); /* enter the critcal region */

Blahblah();

signal(mutex); /* exit the critical region */

Notice that the initial count determines how many
waits can progress before blocking and requiring
a signal ⇒ mutex.count initialised as 1

37

Solving the producer-consumer

problem with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0;

38

Solving the producer-consumer

problem with semaphores

prod() {

while(TRUE) {

item = produce()

wait(empty);

wait(mutex)

insert_item();

signal(mutex);

signal(full);

}

}

con() {

while(TRUE) {

wait(full);

wait(mutex);

remove_item();

signal(mutex);

signal(empty);

}

}

39

Summarising Semaphores

• Semaphores can be used to solve a
variety of concurrency problems

• However, programming with then can be
error-prone

– E.g. must signal for every wait for mutexes

• Too many, or too few signals or waits, or signals
and waits in the wrong order, can have

catastrophic results

40

Monitors
• To ease concurrent programming, Hoare (1974)

proposed monitors.
– A higher level synchronisation primitive

– Programming language construct

• Idea
– A set of procedures, variables, data types are

grouped in a special kind of module, a monitor.
• Variables and data types only accessed from within the

monitor

– Only one process/thread can be in the monitor at any
one time

• Mutual exclusion is implemented by the compiler (which
should be less error prone)

41

Monitor

• When a thread
calls a monitor
procedure that
has a thread
already inside, it
is queued and it
sleeps until the
current thread
exits the monitor.

42

Monitors

Example of a monitor

43

Simple example

monitor counter {

int count;

procedure inc() {

count = count + 1;

}

procedure dec() {

count = count –1;

}

}

Note: “paper” language

• Compiler guarantees
only one thread can
be active in the
monitor at any one
time

• Easy to see this
provides mutual
exclusion
– No race condition on
count.

44

How do we block waiting for an

event?
• We need a mechanism to block waiting for

an event (in addition to ensuring mutual
exclusion)

– e.g., for producer consumer problem when

buffer is empty or full

• Condition Variables

45

Condition Variable
• To allow a process to wait within the monitor, a condition

variable must be declared, as

condition x, y;

• Condition variable can only be used with the operations

wait and signal.

– The operation

x.wait();
means that the process invoking this operation is suspended until
another process invokes

x.signal();

– The x.signal operation resumes exactly one suspended process. If
no process is suspended, then the signal operation has no effect.

46

Condition Variables

47

Monitors

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time

– buffer has N slots

48

OS/161 Provided Synchronisation

Primitives

• Locks

• Semaphores

• Condition Variables

49

Locks

• Functions to create and destroy locks

struct lock *lock_create(const char *name);

void lock_destroy(struct lock *);

• Functions to acquire and release them

void lock_acquire(struct lock *);

void lock_release(struct lock *);

50

Example use of locks

int count;

struct lock *count_lock

main() {

count = 0;

count_lock =

lock_create(“count

lock”);

if (count_lock == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

lock_acquire(count_lock);

count = count + 1;

lock_release(count_lock);

}

procedure dec() {

lock_acquire(count_lock);

count = count –1;

lock_release(count_lock);

}

51

Semaphores

struct semaphore *sem_create(const char *name, int

initial_count);

void sem_destroy(struct semaphore *);

void P(struct semaphore *);

void V(struct semaphore *);

52

Example use of Semaphores

int count;

struct semaphore

*count_mutex;

main() {

count = 0;

count_mutex =

sem_create(“count”,

1);

if (count_mutex == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

P(count_mutex);

count = count + 1;

V(count_mutex);

}

procedure dec() {

P(count_mutex);

count = count –1;

V(count_mutex);

}

53

Condition Variables

struct cv *cv_create(const char *name);

void cv_destroy(struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);

– Releases the lock and blocks
– Upon resumption, it re-acquires the lock

• Note: we must recheck the condition we slept on

void cv_signal(struct cv *cv, struct lock *lock);

void cv_broadcast(struct cv *cv, struct lock *lock);

– Wakes one/all, does not release the lock
– First “waiter” scheduled after signaller releases the lock will re-

acquire the lock

Note: All three variants must hold the lock passed in.

54

Condition Variables and Bounded

Buffers
Non-solution

lock_acquire(c_lock)

if (count == 0)

sleep();

remove_item();

count--;

lock_release(c_lock);

Solution
lock_acquire(c_lock)

while (count == 0)

cv_wait(c_cv, c_lock);

remove_item();

count--;

lock_release(c_lock);

55

A Producer-Consumer Solution

Using OS/161 CVs
int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

lock_aquire(l)

while (count == N)

cv_wait(f,l);

insert_item(item);

count++;

if (count == 1)
cv_signal(e,l);

lock_release()

}

}

con() {

while(TRUE) {

lock_acquire(l)

while (count == 0)

cv_wait(e,l);

item = remove_item();

count--;

if (count == N-1)

cv_signal(f,l);

lock_release(l);

consume(item);

}

}

56

Dining Philosophers

• Philosophers eat/think

• Eating needs 2 forks

• Pick one fork at a time

• How to prevent deadlock

57

Dining Philosophers

Solution to dining philosophers problem (part 1)

58

Dining Philosophers

A nonsolution to the dining philosophers problem

59

Dining Philosophers

Solution to dining philosophers problem (part 2)

60

The Readers and Writers Problem

• Models access to a database
• E.g. airline reservation system

– Can have more than one concurrent reader

• To check schedules and reservations

– Writers must have exclusive access

• To book a ticket or update a schedule

61

The Readers and Writers Problem

A solution to the readers and writers problem

62

The Sleeping Barber Problem

63

The Sleeping Barber Problem

Solution to sleeping barber problem.

See the textbook

