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Course Outline

* Prerequisites
— COMP2011 Data Organisation

- Stacks, queues, hash tables, lists, trees, heaps,....

— COMP2121 Microprocessor and Interfacing
« Assembly programming
- Mapping of high-level procedural language to assembly
language
— or the postgraduate equivalent

— You are expected to be competent
programmers!!!!
+ We will be using the C programming language

— The dominant language for OS implementation.

— — Need to understand pointers, pointer arithmetic, explicit 5
GG Nt SOUTH WALES memory allocation.




Why does this fail?

void func(int *x, int *y)

{
*x = 1; *y = 2;
}
void main ()
{
int *a, *b;
func(a,b);
}




Lectures

« Common for all courses (3231/3891/9201/9283)
* Wednesday, 2-4pm

* Thursday, 5-6pm
— All lectures are here (EE LG03)
— The lecture notes will be available on the course web site
 Available prior to lectures, when possible.
-+ Slide numbers for note taking

— The lecture notes and textbook are NOT a substitute for
attending lectures.
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Tutorials

e Start in week 2

* A tutorial participation mark will
contribute to your final assessment.

— Participation means participation, NOT
attendance.

— Comp3891/9283 students excluded
— Comp9201 optional

* You will only get participation marks in
your enrolled tutorial.
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Assignments

« Assignments form a substantial component of
your assessment.

« They are challenging!!!!

— Because operating systems are challenging
« We will be using OS/161,

— an educational operating system

— developed by the Systems Group At Harvard

— It contains roughly 20,000 lines of code and
comments
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Assignments

* Don’t under estimate the time needed to do the
assignments.
— ProfQuotes: [About the midterm] "We can't keep you working
on it all night, it's not OS.“ Ragde, CS341
 If you start a couple days before they are due, you
will be late.

« To encourage you to start early,
— Bonus 10% of max mark of the assignment for finishing a
week early
— To iron out any potential problems with the spec, 5% bonus
for finishing within 48 hours of assignment release.
— See course handout for exact details
* Read the fine print!!!!
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Assignments

Assignments are in pairs
— Info on how to pair up available soon

We usually offer advanced versions of the
assignments

— Available bonus marks are small compared to amount of
effort required.

— Student should do it for the challenge, not the marks.

— Attempting the advanced component is not a valid excuse
for failure to complete the normal component of the
assignment

Extended OS students (COMP3891/9283) are
expected to attempt the advanced assignments



Assignments

* Four assignments
— due roughly week 4,5, 9,13

* The first one is trivial

— It's a warm up to have you familiarize
yourself with the environment and easy
marks.

— Do not use it as a gauge for judging the
difficulty of the following assignments.
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Assignments

- Late penalty

— 4% of total assignment value per day
+ Assignment is worth 20%
* You get 18, and are 2 days late
* Final mark = 18 — (2070.04*2) = 16 (16.4)
» Assignments are only accepted up to
one week late. 8+ days =0

-- THE UNIVERSITY OF
NEW SOUTH WALES

10



Assignments

* To help you with the assignments

— We dedicate a tutorial per-assignment to
discuss issues related to the assignment
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Plagiarism

» We take cheating seriously!!!

* Penalties include
— Copying of code: 0 FL

— Help with coding: negative half the assignment’s
max marks

— Originator of a plagiarised solution: O for the
particular assignment

— Team work outside group: 0 for the particular
assignments
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Cheating Statistics

Session 1998/S1 1999/S1 2000/S1 2001/S1 2001/S2 2002/S1 2002/S2 2003/S1
enrolment 178 410 320 300 107 298 156 333
suspected

cheaters 10(6%) 26(6%) 22(7%) 26(9%) 20(19%) 15(5%) ???(?%) 13 (4%)

full penalties .-

2 6 9 14 10 9 5 2
reduced
penalties 7 15 7 7 5 4 2 2
cheaters
failed 4 10 16 16 10 12 5 4
cheaters
suspended O 0 1 0 0 1 0 0

*Note: Full penalty 0 FL not applied prior to 2001/S1
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Exams

 There is NO mid-session
* The final written exam iIs 2 hours

« Supplementary exams are oral.

— Supplementaries are available according to
school policy, not as a second chance.
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Assessment

« Exam Mark
Component
— Max mark of 100

- Based solely on the
final exam

SEL THE UNIVERSITY OF
NEW SOUTH WALES

« Class Mark
Component
— Max mark of 100

* 10% tutorial
participation
* 90% Assignments

15



3891/9283

* No tutorial participation component
» Assignment marks scaled to 100
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9201

 Optional tutorial participation, we'll
award the better mark of

— Tutorial participation included as for
comp3231

— Class marked based solely on the
assignments
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Undergrad Assessment

 The final assessment is the harmonic
mean of the exam and class
component.

 If E >=40,

2EC
E+C

M =

18




Postgrads (9201/9283)

« Maximum of a 50/50 weighted harmonic
mean and a 20/80 harmonic mean

— Can weight final mark heavily on exam if you can't
commit the time to the assignments

— You are rewarded for seriously attempting the
assignments

- If E >= 40,

M = maz (355, 2E6,)

19
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Assessment

* If E<40

4 h
M = min| 44, 2EC
. E+C)
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Final Mark = 50
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Assessment

* You need to perform reasonably
consistently in both exam and class
components.

» Harmonic mean only has significant
effect with significant variation.

» Reserve the right to scale, and scale
courses individually if required.

— Warning: We have not scaled in the past.

R
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Textbook

 Andrew
Tanenbaum,
Modern Operating
Systems, 2"
Edition, Prentice
Hall
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References

A. Silberschatz and P.B. Galvin, Operating System Concepts,
5t 6t or 7t edition, Addison Wesley

« William Stallings, Operating Systems: Internals and Design
Principles, 4th or 5t edition, Prentice Hall.

* A. Tannenbaum, A. Woodhull, Operating Systems--Design and
Implementation, 2" edition Prentice Hall

« John O'Gorman, Operating Systems, MacMillan, 2000

 Uresh Vahalla, UNIX Internals: The New Frontiers, Prentice
Hall, 1996

«  McKusick et al., The Design and Implementation of the 4.4 BSD
Operating System, Addison Wesley, 1996
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Consultations/Questions

» Questions should be directed to the forum.

« Admin related queries to Nicholas Fitzroy-Dale
nfd@cse.unsw.edu.au

« Personal queries can be directed to me
kevine@cse.unsw.edu.au

« We reserve the right to ignore email sent directly to
us (including tutors) if it should have been directed to
the forum.

 (Consultation Times
— TBA
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Course Outline

* Processes and threads
» Concurrency control

* Memory Management
* File Systems

» |/O and Devices

« Security

» Scheduling

=
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Introduction to Operating

Systems

Chapter 1 — 1.3




Learning Outcomes

- High-level understand what is an
operating system and the role it plays

» Appreciate the evolution of operating
systems tracks the evolution of
hardware, and that evolution is repeated
INn each new hardware era.

32



What is an Operating

N
s

Windows*”
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Uiewing tRe 5perating

System as an Abstract

Machine
* Extends the basic hardware with added

functionality

* Provides high-level abstractions
— More programmer friendly
— Common core for all applications

* |t hides the details of the hardware
— Makes application code portable

35
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Viewing the Operating System
as a Resource Manager

* Responsible for allocating resources to users
and processes

 Must ensure
— No Starvation
— Progress

— Allocation is according to some desired policy

* First-come, first-served; Fair share; Weighted fair share;
limits (quotas), etc...

— Qverall, that the system is efficiently used

] 37
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Dated View: the Operating
System as the Privileged
Privieged Mode ~ COMpoONent

Requests \ Applications

(System Calls)

User Mode -
Applications Applications

i) 38
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The Operating System is
Privileged

* Applications should not be able to interfere or bypass
the operating system
— OS can enforce the “extended machine”
— OS can enforce its resource allocation policies
— Prevent applications from interfering with each other

* Note: Some Embedded OSs have no privileged
component, e.g. PaimOS
— Can implement OS functionality, but cannot enforce it.

* Note: Some operating systems implement significant

OS functionality in user-mode, e.g. User-mode Linux

=5 39
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Why Study Operating
Systems?
* There are many interesting problems in

operating systems.

* For a complete, top-to-bottom view of a
system.

« Understand performance implications of
application behaviour.

« Understanding and programming large,
complex, software systems is a good skill to
acquire.

R
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(A brief) Operatmg System History

- Largely parallels hardware .
development

- First Generation machines i &
— Vacuum tubes , s
— Plug boards il @
« Programming via wiring
« Users were simultaneously ;
(%

designers, engineers, and
programmers

+ “single user”
® diffiCUlt to debug (hardware) Replacing a bad tube meant checking among ENTAC’s 19,000 possibilities.

— No Operating System

41




Second Generation Machines
Batch Systems
& -

- IBM 7094 e
— 0.35 MIPS, 32K x 36-bit -".i; = """'" =
memory = .
— 3.5 million dollars

- Batching used to more
efficiently use the
hardware

— Share machine amongst
many users

— One at atime
— Debugging a pain

 Drink coffee until jobs
finished

£5 42
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Batch System
Operating Systems

» Sometimes called “resident job monitor”
- Managed the Hardware

» Simple Job Control Language (JCL)
— Load compiler
— Compile job
— Run job
— End job
* No resource allocation issues
— “one user’

)
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Problem: Keeping Batch
Systems Busy

» Reading tapes or punch cards was time
consuming

- Expensive CPU was idle waiting for input
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Third Generation Systems -
Multiprogramming

Divided memory among several
loaded jobs

While one job is loading, CPU
works on another

With enough jobs, CPU 100%
busy

Needs special hardware to
Isolate memory partitions from
each other

— This hardware was notably absent
on early 2 gen. batch systems

B
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Multiprogramming Example

= 1O, = 10N
CPU CPU
e 0
I I I I ! = 1o 10
Memory Memory
L1y
= 100 Fe
Disk Disk
—
1o
Terminal Terminal
L1y
= 100V
Frinter Printer
L1
Job History Job History

minuies

1] 5 10 15

{a) Uniprogramming minutes

{b) Multiprogramming 46

Figure 2.6 Utilization Histograms



Job turn-around time was
still an issue.

» Batch systems were well suited to
— Scientific calculations
— Data processing

» For programmers, debugging was much
easier on older first gen. machines as
the programmer had the machine to
himself.

» Word processing on a batch system?

47

=2
e 1HE UNIVERSITY OF
¢ - NEW SOUTH WALES




Time sharing

« Each user had his/her own terminal
connected to the machine

 All user’'s jobs were multiprogrammed
— Regqularly switch between each job
— Do it fast

 Gives the illusion that the programmer
has the machine to himself

 Early examples: Compatible Time
Sharing System (CTSS), MULTICS

THE UNIVERSITY OF
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An then...

* Further developments (hardware and
software) resulted in improved techniques,
concepts, and operating systems.....

— CAP, Hydra, Mach, UNIX V6, BSD UNIX, THE,
Thoth, Sprite, Accent, UNIX SysV, Linux, EROS,
KeyKQOS, 0S5/360, VMS, HPUX, Apollo Domain,
Nemesis, L3, L4, CP/M, DOS, Exo-kernel, Angel,
Mungi, BE OS, Cache Kernel, Choices, V, Inferno,
Grasshopper, MOSIX, Opal, SPIN, VINO, OS9,
Plan/9, QNX, Synthetix, Tornado, x-kernel,
VxWorks, Solaris..........

=5 49
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The Advent of the PC

» Large Scale Integration (LSI) made small,
fast(-ish), cheap computers possible

» OSs followed a similar path as with the
mainframes
— Simple “single-user” systems (DOS)

— Multiprogramming without protection, (80286 era,
Window 3.1, 95, 98, ME, etc..., MacOS <= 9)

— “Real” operating systems (UNIX, WinNT, MacOS
X etc..)

L THE UNIVERSITY OF
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—
Operating System Time Line

1950 1960 1970 1980 1990

MULTICS
mainframes \
no compilers time distributed

software shared multiuser systems

batch multiprocessor

resident networked

; fault tolerant
monitors

UNIX

minicomputers -
no compilers

software , , .
time multiuser multiprocessor

resident  shared N fault tolerant

networked
N\

clustered
UNIX

monitors

desktop computers .
no compilers

software interactive multiprocessor

multiuser B orked

UNIX

compilers no
software

handheld computers

interactive
networked
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Computer Hardware

Review

Chapter 1.4




Learning Outcomes

» Understand the basic components of
computer hardware

— CPU, buses, memory, devices controllers,
DMA, Interrupts, hard disks

» Understand the concepts of memory
hierarchy and caching, and how they
affect performance.

53
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Operating Systems

 Exploit the hardware available

* Provide a set of high-level services that
represent or are implemented by the
hardware.

» Manages the hardware reliably and
efficiently

» Understanding operating systems
requires a basic understanding of the
underlying hardware

54
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Basic Computer Elements

disk disk printer tape drives

w7 &

disk printer tape-drive
controller controller controller

memory controller

_*

memory

— 55
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. CIF.?{Ja\sic Computer Elements

— Performs computations
— Load data to/from memory via system bus

« Device controllers
— Control operation of their particular device
— Operate in parallel with CPU
— Can also load/store to memory (Direct Memory Access, DMA)

— Control register appear as memory locations to CPU
* Or /O ports

— Signal the CPU with “interrupts”
* Memory Controller

— Responsible for refreshing dynamic RAM
— Arbitrating access between different devices and CPU

=5 56
el THE UNIVERSITY OF
s NEW SOUTH WALES




—_—
The real world is logically similar,

but a little more complex
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A Simple Model of CPU
Computation
* The fetch-execute cycle

Fetch Cycle Execute Cycle

START < Feltch Next Execute HALT
“|  Instruction Instruction

Figure 1.2 Basic Instruction Cycle
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A Simple Model of CPU

Computation

« Stack Pointer

« Status Register
— Condition codes

CPU Registers

- Positive result PC: 0x0300
- Zero result SP: Oxcbf3
* Negative result Status
» General Purpose Registers R1
— Holds operands of most !
Instructions Rn

— Enables programmers to

minimise memory references.

=5 59
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A Simple Model of CPU
Computation

« The fetch-execute cycle

— Load memory contents from
address in program counter

CPU Registers

(PC) PC: 0x0300
-+ The instruction SP: 0Oxcbf3
— Execute the instruction Status
— Increment PC R1
— Repeat !
Rn

== 60
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Privileged-mode Operation
CPU Registers

* To protect operating system
execution, two or more CPU
modes of operation exist

— Privileged mode (system-,

kernel-mode) PC: 0x0300
 All instructions and registers are SP: Oxcbf3
— User-mode R1
« Uses ‘safe’ subset of the 1
instruction set
— E.g. no disable interrupts Rn
instruction

* Only ‘safe’ registers are

BB THE UNIVERSITY OF i
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‘Safe’ registers and
instructions

» Registers and instructions are safe if
— Only affect the state of the application itself

— They cannot be used to uncontrollably
interfere with
* The operating system
* Other applications

— They cannot be used to violate a correctly
implemented operating system policy.

62
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Privileged-mode Operation
Address Space

- The accessibility of OxFFFFFFFF
addresses within an
address space
changes depending (,s0000000

on operating mode
— To protect kernel code ACSGSSibleJO
ser- an
and data Kernel-mode
0Ox00000000

63
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I/0 and Interrupts

* |/O events (keyboard, mouse, incoming network
packets) happen at unpredictable times

« How does the CPU know when to service an I/O
event?

64
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Interrupt

* An interruption of the normg | sequence of
execution

* A suspension of processing caused by an event
external to that processing, and performed in
such a way that the processing can be resumed.

* Improves processing efficiency

— Allows the processor to execute other instructions
while an I/O operation is in progress

— Avoids unnecessary completion checking (polling)

65




Interrupt Cycle

* Processor checks for interrupts
* If no interrupts, fetch the next instruction

* If an interrupt is pending, divert to the
interrupt handler

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Fetch MNext

=5 66
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Classes of Interrupts

* Program exceptions
(also called synchronous interrupts)
— Arithmetic overflow
— Division by zero
— Executing an illegal/privileged instruction
— Reference outside user's memory space.

* Asynchronous (external) events
— Timer
— 1/O
— Hardware or power failure 67
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Interrupt Handler

* A program that determines the nature of
the interrupt and performs whatever
actions are needed.

 Control is transferred to the handler by
hardware.

* The handler is generally part of the
operating system.
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Simple Interrupt

User Mode % Application

R

Kernel Mode

Interrupt

Handler
69
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Simple Interrupt Processing

Device controller
issues an interrupt

A\ 4
Processor finishes
current instruction

and changes to
kernel mode

User state is restored

A

User SP & PC
loaded from
kernel stack

A 4

Processor masks
interrupts and
transfers flow of
control (new PC)

Interrupt is processed
including
acknowledging
the interrupt at the
device level

A 4

A 4

A

Kernel SP loaded
user SP & PC pushed
on kernel stack

Remainder of user
state is saved

Processor unmasks
interrupts and returns
to user mode.

Hardware

Software

Hardware

] 70
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—
Multiple
Interrupts

Interrupt

N Sequentia| interrupts User Program Handler X

— Processor ignores
any new interrupt
signals

— Interrupts remain
pending until current
interrupt completes

— Upon completion,

processor checks for
additional interrupts

I
=
=y

/|

[~ e 5] Interrupt
T, ==~-___  Handlery

-
- -

e o e e e
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|

|

|

|

|

|
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-

{a) Sequentlal Interrupt processing
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Multiple Interrupts

* Prioritised (nested)
interrupts

— Processor ignores any
new lower-priority
interrupt signals

— New higher-priority
Interrupts interrupt the
current interrupt handler

— Example: when input
arrive from a
communication line, it
needs to be absorbed
quickly to make room for
more input

Handler X

—
e m a
T
=}

mmmmm e mm—my

{b) Nested interrupt processing,

Interrupt
- Handler Y
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%
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|

|

|

|

|

|

e
-

|

|

Figure 1.12 Transfer of Control with Multiple Interrupts
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Programmed /O

 Also called polling, or busy
waiting
 1/0O module (controller)

performs the action, not the
processor

« Sets appropriate bits in the 1/0O
status register

* No interrupts occur
 Processor checks status until

operation is complete
— Wastes CPU cycles

L THE UNIVERSITY OF
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[ssue Read
—p command to PU - /O
'O module

Read status
of 'O
module

Not

ready
Check
status

Ready

/O — CPU

Error
condition

Read word

from /O /0O —- CPU
Module

Write word

PU — memor
into memory ¥

Next instruction
{a) Programmed /O



Interrupt-Driven I/O

* Processor is interrupted when
/O module (controller) ready to
exchange data

* Processor is free to do other
work

* No needless waiting

« Consumes a lot of processor
time because every word read
or written passes through the

processor

Sl THE UNIVERSITY OF
NEW SOUTH WALES

Issue Read PU — 1O

command to Do something
/0 module Polse

Read status = == Interrupt

of /O

module /O — CPU

Check Error
atatus condition
Ready
Read word
from IO /0 — CPLT
Module
Write word
PU — memory

into memory

Next instruction
{b) Interrupt-driven /O



Direct memory access (DMA)

* 1/O exchanges occur directly
with memory

* Processor directs I/O controller
to read/write to memory

* Relieves the processor of the
responsibility for data transfer

* Processor free to do other
things

* An interrupt is sent when the
task is complete

B
- “- THE UNIVERSITY OF
NEW SOUTH WALES

Issue Read PU — DMA
block commanid Do something
I module B +ElS-E:

Kead status

of DMA
module

= = = [nterrupt

DMA — CPU

MNext instruction

(c) Direct memory access
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Multiprogramming
(Multitasking)

* Processor has more that one program
{0 execute.
— Some tasks waiting for /O to complete
— Some tasks ready to run, but not running

* Interrupt handler can switch to other
tasks when they become runnable

* Regular timer interrupts can be used for
timesharing

R
e 1HE UNIVERSITY OF
- NEW SOUTH WALES
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Memory Hierarchy

« Going down the

hierarchy

— Decreasing cost per
bit

— Increasing capacity

— Increasing access
time

— Decreasing
frequency of access
to the memory by the

processor
* Hopefully

b))
- “- THE UNIVERSITY OF
Egestl NEW SOUTH WALES

Figure 1.14 The Memory Hierarchy




Memory Hierarchy

* Rough approximation of memory hierarchy

Typical access time

1 nsec Registers
2 nsec Cache
10 nsec Main memory
10 msec Magnetic disk
100 sec Magnetic tape

=
“- THE UNIVERSITY OF
NEW SOUTH WALES

|
e

Typical capacity

<1 KB
1 MB
64-512 MB
5-50 GB

20-100 GB
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Cache

Word Transfer Block Transfer

CPU ﬁ Cache “Main Memory

Registers

« Cache is fast memory placed between the CPU and main memory

— 1 to a few cycles access time compared to RAM access time of tens —
hundreds of cycles

« Holds recently used data or instructions to save memory accesses.
« Matches slow RAM access time to CPU speed if high hit rate

* |s hardware maintained and (mostly) transparent to software

« Sizes range from few kB to several MB.

« Usually a hierarchy of caches (2-5 levels), on- and off-chip.

. Bloc(:jk transfers can achieve higher transfer bandwidth than single
words.

— Also assumes probability of using newly fetch data is higher than the
probability of reuse ejected data.
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Cache size affect on performance

Momalized Transactions! Second

Relative Performance Scaling

3580

—— 2 WE cache

—8—1 VE cache

|

3.00

2.50

g

2.00

1.50

1.00

0.50 . .

2 4 &

Mum ber of Processors

Figure | - OLTP Performance Improvement Betweer I-MB
and 2-MEB Cuaches in @ ProLiant 8300 Server
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Moving-Head Disk Mechanism

«— spindle

— arm assembly

sector s

read-write
head

{

rotation




Example Disk Access Times

* Disk can read/write data relatively fast
— 15,000 rpm drive - 80 MB/sec
— 1 KB block is read in 12 microseconds

« Access time dominated by time to locate the
head over data

— Rotational latency
- Half one rotation is 2 milliseconds

— Seek time
* Full inside to outside is 8 milliseconds
» Track to track .5 milliseconds

« 2 milliseconds is 164KB in “lost bandwidth”

=5 83
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A Strategy: Avoid Waiting for
Disk Access

» Keep a subset of the disk’s data in
memory

= Main memory acts as a cache of disk
contents

= 84
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Two-level Memories and Hit
Rates

» Given a two-level memory,
— cache memory and main memory (RAM)
— main memory and disk

what is the effective access time?

» Answer: It depends on the hit rate in the
first level.

=5 85
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Effective Access Time

Tepr = Hx T1+ (1 — H) x (T1 + T»)

17 = access time of memory 1
T> = access time of memory 2
H = hit rate in memory 1
Teff — effective access time of system
-W- THE UNIVERSITY OF 86
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Example

» Cache memory access time 1ns
» Main memory access time 10ns
 Hit rate of 95%

T.;p = 0.95x1x1077+
0.05x (1 x 1072 4+ 10x 107?)
1.5 x 1072
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