Introduction

COMP3231/9201/3891/9283
(Extended) Operating Systems
Kevin Elphinstone

Course Outline

* Prerequisites
— COMP2011 Data Organisation

- Stacks, queues, hash tables, lists, trees, heaps,....

— COMP2121 Microprocessor and Interfacing
« Assembly programming
- Mapping of high-level procedural language to assembly
language
— or the postgraduate equivalent

— You are expected to be competent
programmers!!!!
+ We will be using the C programming language

— The dominant language for OS implementation.

— — Need to understand pointers, pointer arithmetic, explicit 5
GG Nt SOUTH WALES memory allocation.

Why does this fail?

void func(int *x, int *y)

{
*x = 1; *y = 2;
}
void main ()
{
int *a, *b;
func(a,b);
}

Lectures

« Common for all courses (3231/3891/9201/9283)
* Wednesday, 2-4pm

* Thursday, 5-6pm
— All lectures are here (EE LG03)
— The lecture notes will be available on the course web site
 Available prior to lectures, when possible.
-+ Slide numbers for note taking

— The lecture notes and textbook are NOT a substitute for
attending lectures.

R 4
el THE UNIVERSITY OF
NEW SOUTH WALES

Tutorials

e Start in week 2

* A tutorial participation mark will
contribute to your final assessment.

— Participation means participation, NOT
attendance.

— Comp3891/9283 students excluded
— Comp9201 optional

* You will only get participation marks in
your enrolled tutorial.

R
e 1HE UNIVERSITY OF
- NEW SOUTH WALES

. BhEd
s

Assignments

« Assignments form a substantial component of
your assessment.

« They are challenging!!!!

— Because operating systems are challenging
« We will be using OS/161,

— an educational operating system

— developed by the Systems Group At Harvard

— It contains roughly 20,000 lines of code and
comments

B2 6
e 1HE UNIVERSITY OF
@ NEW SOUTH WALES

Assignments

* Don’t under estimate the time needed to do the
assignments.
— ProfQuotes: [About the midterm] "We can't keep you working
on it all night, it's not OS.“ Ragde, CS341
 If you start a couple days before they are due, you
will be late.

« To encourage you to start early,
— Bonus 10% of max mark of the assignment for finishing a
week early
— To iron out any potential problems with the spec, 5% bonus
for finishing within 48 hours of assignment release.
— See course handout for exact details
* Read the fine print!!!!

R
e 1HE UNIVERSITY OF
NEW SOUTH WALES

B
- “- THE UNIVERSITY OF
NEW SOUTH WALES

Assignments

Assignments are in pairs
— Info on how to pair up available soon

We usually offer advanced versions of the
assignments

— Available bonus marks are small compared to amount of
effort required.

— Student should do it for the challenge, not the marks.

— Attempting the advanced component is not a valid excuse
for failure to complete the normal component of the
assignment

Extended OS students (COMP3891/9283) are
expected to attempt the advanced assignments

Assignments

* Four assignments
— due roughly week 4,5, 9,13

* The first one is trivial

— It's a warm up to have you familiarize
yourself with the environment and easy
marks.

— Do not use it as a gauge for judging the
difficulty of the following assignments.

R
e 1HE UNIVERSITY OF
Eesll NEW SOUTH WALES

.
Fgerssd

Assignments

- Late penalty

— 4% of total assignment value per day
+ Assignment is worth 20%
* You get 18, and are 2 days late
* Final mark = 18 — (2070.04*2) = 16 (16.4)
» Assignments are only accepted up to
one week late. 8+ days =0

-- THE UNIVERSITY OF
NEW SOUTH WALES

10

Assignments

* To help you with the assignments

— We dedicate a tutorial per-assignment to
discuss issues related to the assignment

= R
) THE UNIVERSITY OF
NEW SOUTH WALES

—_——
Plagiarism

» We take cheating seriously!!!

* Penalties include
— Copying of code: 0 FL

— Help with coding: negative half the assignment’s
max marks

— Originator of a plagiarised solution: O for the
particular assignment

— Team work outside group: 0 for the particular
assignments

R 12
el THE UNIVERSITY OF
NEW SOUTH WALES

|
e

Cheating Statistics

Session 1998/S1 1999/S1 2000/S1 2001/S1 2001/S2 2002/S1 2002/S2 2003/S1
enrolment 178 410 320 300 107 298 156 333
suspected

cheaters 10(6%) 26(6%) 22(7%) 26(9%) 20(19%) 15(5%) ???(?%) 13 (4%)

full penalties .-

2 6 9 14 10 9 5 2
reduced
penalties 7 15 7 7 5 4 2 2
cheaters
failed 4 10 16 16 10 12 5 4
cheaters
suspended O 0 1 0 0 1 0 0

*Note: Full penalty 0 FL not applied prior to 2001/S1

- THE UNIVERSITY OF
NEW SOUTH WALES

2003/S2
133

222(?%)

1

9

13

Exams

 There is NO mid-session
* The final written exam iIs 2 hours

« Supplementary exams are oral.

— Supplementaries are available according to
school policy, not as a second chance.

= 14
el THE UNIVERSITY OF
NEW SOUTH WALES

Assessment

« Exam Mark
Component
— Max mark of 100

- Based solely on the
final exam

SEL THE UNIVERSITY OF
NEW SOUTH WALES

« Class Mark
Component
— Max mark of 100

* 10% tutorial
participation
* 90% Assignments

15

3891/9283

* No tutorial participation component
» Assignment marks scaled to 100

R 1 6
el THE UNIVERSITY OF
- NEW SOUTH WALES

. BhEd
s

9201

 Optional tutorial participation, we'll
award the better mark of

— Tutorial participation included as for
comp3231

— Class marked based solely on the
assignments

= '
) THE UNIVERSITY OF
NEW SOUTH WALES

Undergrad Assessment

 The final assessment is the harmonic
mean of the exam and class
component.

 If E >=40,

2EC
E+C

M =

18

Postgrads (9201/9283)

« Maximum of a 50/50 weighted harmonic
mean and a 20/80 harmonic mean

— Can weight final mark heavily on exam if you can't
commit the time to the assignments

— You are rewarded for seriously attempting the
assignments

- If E >= 40,

M = maz (355, 2E6,)

19
- - THE UNIVERSITY OF
NEW SOUTH WALES

Assessment

* If E<40

4 h
M = min| 44, 2EC
. E+C)

20

100

Harmonic Mean (Class Mark = 100 - Exam Mark)

90
80

60

Harm 50/50

50

Final Mark

40
30

= = Arith 50/50
= = Arith 20/80
Harm 20/80

N/

20 30 40 50 60 70 80 90 100
Exam Mark

21

Final Mark = 50

100

90
80

70

60
50

40

30

Exam Mark Required to Pass

20

10

10

20

30

40 50 60 70

Class Mark

80

90

100

e Harm 50/50
= Harm 20/80

22

Assessment

* You need to perform reasonably
consistently in both exam and class
components.

» Harmonic mean only has significant
effect with significant variation.

» Reserve the right to scale, and scale
courses individually if required.

— Warning: We have not scaled in the past.

R
el THE UNIVERSITY OF
) NEW SOUTH WALES

26

ce -

Textbook

 Andrew
Tanenbaum,
Modern Operating
Systems, 2"
Edition, Prentice
Hall

R 27
LIl | THE UNIVERSITY OF
NEW SOUTH WALES

References

A. Silberschatz and P.B. Galvin, Operating System Concepts,
5t 6t or 7t edition, Addison Wesley

« William Stallings, Operating Systems: Internals and Design
Principles, 4th or 5t edition, Prentice Hall.

* A. Tannenbaum, A. Woodhull, Operating Systems--Design and
Implementation, 2" edition Prentice Hall

« John O'Gorman, Operating Systems, MacMillan, 2000

 Uresh Vahalla, UNIX Internals: The New Frontiers, Prentice
Hall, 1996

« McKusick et al., The Design and Implementation of the 4.4 BSD
Operating System, Addison Wesley, 1996

B2 28
e 1HE UNIVERSITY OF
NEW SOUTH WALES

Consultations/Questions

» Questions should be directed to the forum.

« Admin related queries to Nicholas Fitzroy-Dale
nfd@cse.unsw.edu.au

« Personal queries can be directed to me
kevine@cse.unsw.edu.au

« We reserve the right to ignore email sent directly to
us (including tutors) if it should have been directed to
the forum.

 (Consultation Times
— TBA

B2 29
e 1HE UNIVERSITY OF
NEW SOUTH WALES

Course Outline

* Processes and threads
» Concurrency control

* Memory Management
* File Systems

» |/O and Devices

« Security

» Scheduling

=
e THE UNIVERSITY OF

30

Introduction to Operating

Systems

Chapter 1 — 1.3

Learning Outcomes

- High-level understand what is an
operating system and the role it plays

» Appreciate the evolution of operating
systems tracks the evolution of
hardware, and that evolution is repeated
INn each new hardware era.

32

What is an Operating

N
s

Windows*”

33

Intef Pentiufhd
Processor

S— | i - :
| ‘ i RDRAM|| :
I 82850 Memory Direct * ol
éfa?ﬁss AGE 2 O! Controller Hulj RDRAME
* —» -1
Controller | Erﬂ{:Hj |nterface: :
I —» RORAM|| :
| - s i
: Hub SETTLTLEPERPECRTLE '
| Interface
I ;z
2 IDE Drives . :
unraATmmcﬁ—l_
' PCl

|
|
|
|
|
|
4
|
|
|
|
|
|
|
|
|
|
| Slot
4 USB Ports; 2 HO—{— ! PCI Bus l' * '1
|
|
!
|
|
|
|
|
|
I
|
|
|
|
!
:
|
|

|
AC'97 Codecs) AC97 211 =
{optional) I 11O Controller Hyb Bridge ISA
1 (82801BA ICHZ2 :
| (optiona Slot
: l = B '1
|
Keyboard, LPC IIF |
Mouse, FD, PRP— Super I/ } PO
SP. IR : Agent
|
|
LAN Conneft : GRIO
|
I

FWH Flash
BIOS

THE UNIVERSITY OF
NEW SOUTH WALES

Uiewing tRe 5perating

System as an Abstract

Machine
* Extends the basic hardware with added

functionality

* Provides high-level abstractions
— More programmer friendly
— Common core for all applications

* |t hides the details of the hardware
— Makes application code portable

35

R
e 1HE UNIVERSITY OF
i W NEW SOUTH WALES

Users

C >\ U

>
(@)
-
= =

AL AR

it

\

CPU

O
™

M\

RN

h

Network
Bandwidt

Viewing the Operating System
as a Resource Manager

* Responsible for allocating resources to users
and processes

 Must ensure
— No Starvation
— Progress

— Allocation is according to some desired policy

* First-come, first-served; Fair share; Weighted fair share;
limits (quotas), etc...

— Qverall, that the system is efficiently used

] 37
el THE UNIVERSITY OF
NEW SOUTH WALES

Dated View: the Operating
System as the Privileged
Privieged Mode ~ COMpoONent

Requests \ Applications

(System Calls)

User Mode -
Applications Applications

i) 38
CEL] THE UNIVERSITY OF
@8] NEW SOUTH WALES

The Operating System is
Privileged

* Applications should not be able to interfere or bypass
the operating system
— OS can enforce the “extended machine”
— OS can enforce its resource allocation policies
— Prevent applications from interfering with each other

* Note: Some Embedded OSs have no privileged
component, e.g. PaimOS
— Can implement OS functionality, but cannot enforce it.

* Note: Some operating systems implement significant

OS functionality in user-mode, e.g. User-mode Linux

=5 39
e 1HE UNIVERSITY OF
NEW SOUTH WALES

Why Study Operating
Systems?
* There are many interesting problems in

operating systems.

* For a complete, top-to-bottom view of a
system.

« Understand performance implications of
application behaviour.

« Understanding and programming large,
complex, software systems is a good skill to
acquire.

R
e 1HE UNIVERSITY OF
&%l NEW SOUTH WALES

40

(A brief) Operatmg System History

- Largely parallels hardware .
development

- First Generation machines i &
— Vacuum tubes , s
— Plug boards il @
« Programming via wiring
« Users were simultaneously ;
(%

designers, engineers, and
programmers

+ “single user”
® diffiCUlt to debug (hardware) Replacing a bad tube meant checking among ENTAC’s 19,000 possibilities.

— No Operating System

41

Second Generation Machines
Batch Systems
& -

- IBM 7094 e
— 0.35 MIPS, 32K x 36-bit -".i; = """'" =
memory = .
— 3.5 million dollars

- Batching used to more
efficiently use the
hardware

— Share machine amongst
many users

— One at atime
— Debugging a pain

 Drink coffee until jobs
finished

£5 42
e 1HE UNIVERSITY OF
NEW SOUTH WALES

Batch System
Operating Systems

» Sometimes called “resident job monitor”
- Managed the Hardware

» Simple Job Control Language (JCL)
— Load compiler
— Compile job
— Run job
— End job
* No resource allocation issues
— “one user’

)
el THE UNIVERSITY OF
3 - NEW SOUTH WALES

43

Problem: Keeping Batch
Systems Busy

» Reading tapes or punch cards was time
consuming

- Expensive CPU was idle waiting for input

ERUN RDKAL.ZR-ZRELB3E,ZRKL, 536, &
|
i1n1l 1 1N (1]]

=[e) geyelelele] Jef=] [z} | p=felel fejeje] Jejelsfe] fe) jelefe]efejelefelelel=leleyefejelelef elele eleleleye yeYe] cefe [elefe]ee [l eYeYele Yl el eR el al e]x]
1111121110011 011111111111 20131112013414241112121111111311124111112111311112111111111111
222222202222222202 22222 20220 2222222222 222322 2222222222222 222222 P22 22222222222
3333333333333 333303033333033 05333333533 33333 3353333333333 3333333 IIFIIZIFIIZI IS
444440444444 444
==y =ttt ==ttt ==ttt =t = =l
EEEEEEEEEEERGAEEERGENEE6EEEEEEEEREEEEEEREREEEARAGAEEEGEEREREEEAGABEEGEEEEE BEEE
A B A O A B o A
S50 o08S008000000500580000005000800000000058000000000505000050080000000000000000800888
SEzo2079 29210792929l 09299 9999399993999 993 99933999393 999399939339239399933939939

=2 44

Ll THE UNIVERSITY OF
NEW SOUTH WALES

Third Generation Systems -
Multiprogramming

Divided memory among several
loaded jobs

While one job is loading, CPU
works on another

With enough jobs, CPU 100%
busy

Needs special hardware to
Isolate memory partitions from
each other

— This hardware was notably absent
on early 2 gen. batch systems

B
- “- THE UNIVERSITY OF
Egestl NEW SOUTH WALES

B,
Bl

Memory

Job 1

Job 2

Job 3

- 45

Multiprogramming Example

= 1O, = 10N
CPU CPU
e 0
I I I I ! = 1o 10
Memory Memory
L1y
= 100 Fe
Disk Disk
—
1o
Terminal Terminal
L1y
= 100V
Frinter Printer
L1
Job History Job History

minuies

1] 5 10 15

{a) Uniprogramming minutes

{b) Multiprogramming 46

Figure 2.6 Utilization Histograms

Job turn-around time was
still an issue.

» Batch systems were well suited to
— Scientific calculations
— Data processing

» For programmers, debugging was much
easier on older first gen. machines as
the programmer had the machine to
himself.

» Word processing on a batch system?

47

=2
e 1HE UNIVERSITY OF
¢ - NEW SOUTH WALES

Time sharing

« Each user had his/her own terminal
connected to the machine

 All user’'s jobs were multiprogrammed
— Regqularly switch between each job
— Do it fast

 Gives the illusion that the programmer
has the machine to himself

 Early examples: Compatible Time
Sharing System (CTSS), MULTICS

THE UNIVERSITY OF
NEW SOUTH WALES

48

An then...

* Further developments (hardware and
software) resulted in improved techniques,
concepts, and operating systems.....

— CAP, Hydra, Mach, UNIX V6, BSD UNIX, THE,
Thoth, Sprite, Accent, UNIX SysV, Linux, EROS,
KeyKQOS, 0S5/360, VMS, HPUX, Apollo Domain,
Nemesis, L3, L4, CP/M, DOS, Exo-kernel, Angel,
Mungi, BE OS, Cache Kernel, Choices, V, Inferno,
Grasshopper, MOSIX, Opal, SPIN, VINO, OS9,
Plan/9, QNX, Synthetix, Tornado, x-kernel,
VxWorks, Solaris..........

=5 49
e 1HE UNIVERSITY OF
NEW SOUTH WALES

The Advent of the PC

» Large Scale Integration (LSI) made small,
fast(-ish), cheap computers possible

» OSs followed a similar path as with the
mainframes
— Simple “single-user” systems (DOS)

— Multiprogramming without protection, (80286 era,
Window 3.1, 95, 98, ME, etc..., MacOS <= 9)

— “Real” operating systems (UNIX, WinNT, MacOS
X etc..)

L THE UNIVERSITY OF
NEW SOUTH WALES

50

—
Operating System Time Line

1950 1960 1970 1980 1990

MULTICS
mainframes \
no compilers time distributed

software shared multiuser systems

batch multiprocessor

resident networked

; fault tolerant
monitors

UNIX

minicomputers -
no compilers

software , , .
time multiuser multiprocessor

resident shared N fault tolerant

networked
N\

clustered
UNIX

monitors

desktop computers .
no compilers

software interactive multiprocessor

multiuser B orked

UNIX

compilers no
software

handheld computers

interactive
networked

51
THE UNIVERSITY OF
NEW SOUTH WALES

Computer Hardware

Review

Chapter 1.4

Learning Outcomes

» Understand the basic components of
computer hardware

— CPU, buses, memory, devices controllers,
DMA, Interrupts, hard disks

» Understand the concepts of memory
hierarchy and caching, and how they
affect performance.

53

R
e 1HE UNIVERSITY OF
- NEW SOUTH WALES

. BhEd
s

=2
el THE UNIVERSITY OF
S H LE

Operating Systems

 Exploit the hardware available

* Provide a set of high-level services that
represent or are implemented by the
hardware.

» Manages the hardware reliably and
efficiently

» Understanding operating systems
requires a basic understanding of the
underlying hardware

54

& - NEW SOUTH WALES

Basic Computer Elements

disk disk printer tape drives

w7 &

disk printer tape-drive
controller controller controller

memory controller

_*

memory

— 55

- THE UNIVERSITY OF
NEW SOUTH WALES

|
e

. CIF.?{Ja\sic Computer Elements

— Performs computations
— Load data to/from memory via system bus

« Device controllers
— Control operation of their particular device
— Operate in parallel with CPU
— Can also load/store to memory (Direct Memory Access, DMA)

— Control register appear as memory locations to CPU
* Or /O ports

— Signal the CPU with “interrupts”
* Memory Controller

— Responsible for refreshing dynamic RAM
— Arbitrating access between different devices and CPU

=5 56
el THE UNIVERSITY OF
s NEW SOUTH WALES

—_—
The real world is logically similar,

but a little more complex

Inte? Pantiufhd
Processor

Main Memaory
Intef 850 Chipset peessmeseremmanaasy

e e
| « s RDRAM|| :
[82850 Memory Direct : o
é’r‘a‘;ﬁ; AGP 2.0! Controller Hul RDRAM 5
™ ! il Ll L]
Controller | (MCH) Interface: '
) ~ RDRAM | :
' 1 E .
: Hub AR :
I Interface
|]
2 IDE Drives g :
UltraaT A/t oF——T—
: PCI

|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
| Slot
4 USB Ports; 2 HO—}— I PCI Bus l' * '1
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
|

| |
AC'97 Codecfs) AC'97 2.1 =
(optional) ; /O Controller Hb :
I | (32801BAICH2 Bridge | 1SA
{optiona Slot
: LN W)
I |—l—iL
Kayboard, LPC IF|
Mouse, FD, PR— Super 1/{ } PCl
SP. IR : — Agent
I
I
LAN Conneft : GPIO
|
U i 57

THE UNIVERSITY OF

FWH FlasH
NEW SOUTH WALES e

A Simple Model of CPU
Computation
* The fetch-execute cycle

Fetch Cycle Execute Cycle

START < Feltch Next Execute HALT
“| Instruction Instruction

Figure 1.2 Basic Instruction Cycle

b))
- “- THE UNIVERSITY OF
- NEW SOUTH WALES

. BhEd
s

58

A Simple Model of CPU

Computation

« Stack Pointer

« Status Register
— Condition codes

CPU Registers

- Positive result PC: 0x0300
- Zero result SP: Oxcbf3
* Negative result Status
» General Purpose Registers R1
— Holds operands of most !
Instructions Rn

— Enables programmers to

minimise memory references.

=5 59
el THE UNIVERSITY OF
s NEW SOUTH WALES

A Simple Model of CPU
Computation

« The fetch-execute cycle

— Load memory contents from
address in program counter

CPU Registers

(PC) PC: 0x0300
-+ The instruction SP: 0Oxcbf3
— Execute the instruction Status
— Increment PC R1
— Repeat !
Rn

== 60
el THE UNIVERSITY OF
NEW SOUTH WALES

Privileged-mode Operation
CPU Registers

* To protect operating system
execution, two or more CPU
modes of operation exist

— Privileged mode (system-,

kernel-mode) PC: 0x0300
 All instructions and registers are SP: Oxcbf3
— User-mode R1
« Uses ‘safe’ subset of the 1
instruction set
— E.g. no disable interrupts Rn
instruction

* Only ‘safe’ registers are

BB THE UNIVERSITY OF i
80 NEW SOUTH WALES aCCGSSlble

61

‘Safe’ registers and
instructions

» Registers and instructions are safe if
— Only affect the state of the application itself

— They cannot be used to uncontrollably
interfere with
* The operating system
* Other applications

— They cannot be used to violate a correctly
implemented operating system policy.

62
THE UNIVERSITY OF
NEW SOUTH WALES

Privileged-mode Operation
Address Space

- The accessibility of OxFFFFFFFF
addresses within an
address space
changes depending (,s0000000

on operating mode
— To protect kernel code ACSGSSibleJO
ser- an
and data Kernel-mode
0Ox00000000

63

-- THE UNIVERSITY OF
NEW SOUTH WALES

—_——
I/0 and Interrupts

* |/O events (keyboard, mouse, incoming network
packets) happen at unpredictable times

« How does the CPU know when to service an I/O
event?

64

R
- '“- THE UNIVERSITY OF
#l NEW SOUTH WALES

Interrupt

* An interruption of the normg | sequence of
execution

* A suspension of processing caused by an event
external to that processing, and performed in
such a way that the processing can be resumed.

* Improves processing efficiency

— Allows the processor to execute other instructions
while an I/O operation is in progress

— Avoids unnecessary completion checking (polling)

65

Interrupt Cycle

* Processor checks for interrupts
* If no interrupts, fetch the next instruction

* If an interrupt is pending, divert to the
interrupt handler

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Fetch MNext

=5 66
CRL] THE UNIVERS

@&l NEW SOUTH
Figure 1.7 Instruction Cycle with Interrupts

Classes of Interrupts

* Program exceptions
(also called synchronous interrupts)
— Arithmetic overflow
— Division by zero
— Executing an illegal/privileged instruction
— Reference outside user's memory space.

* Asynchronous (external) events
— Timer
— 1/O
— Hardware or power failure 67

T THE UNIVERSITY OF
NEW SOUTH WALES

Interrupt Handler

* A program that determines the nature of
the interrupt and performs whatever
actions are needed.

 Control is transferred to the handler by
hardware.

* The handler is generally part of the
operating system.

=2
el THE UNIVERSITY OF
s - NEW SOUTH WALES

68

Simple Interrupt

User Mode % Application

R

Kernel Mode

Interrupt

Handler
69

R
- '“- THE UNIVERSITY OF
#l NEW SOUTH WALES

Simple Interrupt Processing

Device controller
issues an interrupt

A\ 4
Processor finishes
current instruction

and changes to
kernel mode

User state is restored

A

User SP & PC
loaded from
kernel stack

A 4

Processor masks
interrupts and
transfers flow of
control (new PC)

Interrupt is processed
including
acknowledging
the interrupt at the
device level

A 4

A 4

A

Kernel SP loaded
user SP & PC pushed
on kernel stack

Remainder of user
state is saved

Processor unmasks
interrupts and returns
to user mode.

Hardware

Software

Hardware

] 70
L] THE UNIVERSITY OF
NEW SOUTH WALES

|
e

—
Multiple
Interrupts

Interrupt

N Sequentia| interrupts User Program Handler X

— Processor ignores
any new interrupt
signals

— Interrupts remain
pending until current
interrupt completes

— Upon completion,

processor checks for
additional interrupts

I
=
=y

/|

[~ e 5] Interrupt
T, ==~-___ Handlery

-
- -

e o e e e
!

|

|

|

|

|

|

- |
‘__ |

|

-

-
-

{a) Sequentlal Interrupt processing

71

Multiple Interrupts

* Prioritised (nested)
interrupts

— Processor ignores any
new lower-priority
interrupt signals

— New higher-priority
Interrupts interrupt the
current interrupt handler

— Example: when input
arrive from a
communication line, it
needs to be absorbed
quickly to make room for
more input

Handler X

—
e m a
T
=}

mmmmm e mm—my

{b) Nested interrupt processing,

Interrupt
- Handler Y

el
%

-

|

|

|

|

|

|

|

e
-

|

|

Figure 1.12 Transfer of Control with Multiple Interrupts

72

Programmed /O

 Also called polling, or busy
waiting
 1/0O module (controller)

performs the action, not the
processor

« Sets appropriate bits in the 1/0O
status register

* No interrupts occur
 Processor checks status until

operation is complete
— Wastes CPU cycles

L THE UNIVERSITY OF
NEW SOUTH WALES

[ssue Read
—p command to PU - /O
'O module

Read status
of 'O
module

Not

ready
Check
status

Ready

/O — CPU

Error
condition

Read word

from /O /0O —- CPU
Module

Write word

PU — memor
into memory ¥

Next instruction
{a) Programmed /O

Interrupt-Driven I/O

* Processor is interrupted when
/O module (controller) ready to
exchange data

* Processor is free to do other
work

* No needless waiting

« Consumes a lot of processor
time because every word read
or written passes through the

processor

Sl THE UNIVERSITY OF
NEW SOUTH WALES

Issue Read PU — 1O

command to Do something
/0 module Polse

Read status = == Interrupt

of /O

module /O — CPU

Check Error
atatus condition
Ready
Read word
from IO /0 — CPLT
Module
Write word
PU — memory

into memory

Next instruction
{b) Interrupt-driven /O

Direct memory access (DMA)

* 1/O exchanges occur directly
with memory

* Processor directs I/O controller
to read/write to memory

* Relieves the processor of the
responsibility for data transfer

* Processor free to do other
things

* An interrupt is sent when the
task is complete

B
- “- THE UNIVERSITY OF
NEW SOUTH WALES

Issue Read PU — DMA
block commanid Do something
I module B +ElS-E:

Kead status

of DMA
module

= = = [nterrupt

DMA — CPU

MNext instruction

(c) Direct memory access

75

Multiprogramming
(Multitasking)

* Processor has more that one program
{0 execute.
— Some tasks waiting for /O to complete
— Some tasks ready to run, but not running

* Interrupt handler can switch to other
tasks when they become runnable

* Regular timer interrupts can be used for
timesharing

R
e 1HE UNIVERSITY OF
- NEW SOUTH WALES

. BhEd
s

76

Memory Hierarchy

« Going down the

hierarchy

— Decreasing cost per
bit

— Increasing capacity

— Increasing access
time

— Decreasing
frequency of access
to the memory by the

processor
* Hopefully

b))
- “- THE UNIVERSITY OF
Egestl NEW SOUTH WALES

Figure 1.14 The Memory Hierarchy

Memory Hierarchy

* Rough approximation of memory hierarchy

Typical access time

1 nsec Registers
2 nsec Cache
10 nsec Main memory
10 msec Magnetic disk
100 sec Magnetic tape

=
“- THE UNIVERSITY OF
NEW SOUTH WALES

|
e

Typical capacity

<1 KB
1 MB
64-512 MB
5-50 GB

20-100 GB

78

=™ THE UNIVERSITY OF

e ——
Cache

Word Transfer Block Transfer

CPU ﬁ Cache “Main Memory

Registers

« Cache is fast memory placed between the CPU and main memory

— 1 to a few cycles access time compared to RAM access time of tens —
hundreds of cycles

« Holds recently used data or instructions to save memory accesses.
« Matches slow RAM access time to CPU speed if high hit rate

* |s hardware maintained and (mostly) transparent to software

« Sizes range from few kB to several MB.

« Usually a hierarchy of caches (2-5 levels), on- and off-chip.

. Bloc(:jk transfers can achieve higher transfer bandwidth than single
words.

— Also assumes probability of using newly fetch data is higher than the
probability of reuse ejected data.

79

B NEW SOUTH WALES

-k
(-
(-
o

100

10

Performance

=

L THE UNIVERSITY OF
NEW SOUTH WALES

——
Processor-DRAM Gap

(latency)

.. ~ uProc

“MOOI’e’S LaW” GOO/O/yr
Processor-Memory
Performance Gap:

~— DRAM
ot 7%y,

|

y

1980
1981 |
1982
1983
1984
1985
1986 |
1987

VA O T ANNITOHONMNOOWOOO

VOV OO OO

OO OO O O O

-rfrrYrrrrrrrerersereQQ
Time

80

Slide originally from Dave Patterson, Parcon 98

Cache size affect on performance

Momalized Transactions! Second

Relative Performance Scaling

3580

—— 2 WE cache

—8—1 VE cache

|

3.00

2.50

g

2.00

1.50

1.00

0.50 . .

2 4 &

Mum ber of Processors

Figure | - OLTP Performance Improvement Betweer I-MB
and 2-MEB Cuaches in @ ProLiant 8300 Server

81

Moving-Head Disk Mechanism

«— spindle

— arm assembly

sector s

read-write
head

{

rotation

Example Disk Access Times

* Disk can read/write data relatively fast
— 15,000 rpm drive - 80 MB/sec
— 1 KB block is read in 12 microseconds

« Access time dominated by time to locate the
head over data

— Rotational latency
- Half one rotation is 2 milliseconds

— Seek time
* Full inside to outside is 8 milliseconds
» Track to track .5 milliseconds

« 2 milliseconds is 164KB in “lost bandwidth”

=5 83
e 1HE UNIVERSITY OF
@ NEW SOUTH WALES

A Strategy: Avoid Waiting for
Disk Access

» Keep a subset of the disk’s data in
memory

= Main memory acts as a cache of disk
contents

= 84
CEL THE UNIVERSITY OF
@8] NEW SOUTH WALES

Two-level Memories and Hit
Rates

» Given a two-level memory,
— cache memory and main memory (RAM)
— main memory and disk

what is the effective access time?

» Answer: It depends on the hit rate in the
first level.

=5 85
e 1HE UNIVERSITY OF
- NEW SOUTH WALES

. BhEd
s

Effective Access Time

Tepr = Hx T1+ (1 — H) x (T1 + T»)

17 = access time of memory 1
T> = access time of memory 2
H = hit rate in memory 1
Teff — effective access time of system
-W- THE UNIVERSITY OF 86

NEW SOUTH WALES

Example

» Cache memory access time 1ns
» Main memory access time 10ns
 Hit rate of 95%

T.;p = 0.95x1x1077+
0.05x (1 x 1072 4+ 10x 107?)
1.5 x 1072

R 87
el THE UNIVERSITY OF
- NEW SOUTH WALES

. BhEd
s

