
Slide 1

Virtual Memory

COMP3231 Operating Systems

2005/S2

Slide 2

BASIC FEATURES OF VIRTUAL MEMORY

➜ Piecewise-linear mapping of virtual to physical addresses

• Paging: fixed and (usually) equal-sized blocks

- only small internal fragmentation
- programmer not aware of technique used

• Segmentation: variable-sized blocks

- external fragmentation
- programmer aware of technique used
- can be combined with fixed-sized

BASIC FEATURES OF V IRTUAL MEMORY 1

Slide 3

➜ Mapping is

- defined at run-time, and
- can change

➜ Process does not have to be contiguous in physical memory

➜ Address space can have holes (unmapped regions)

➜ Process image may be only partially resident

• Allows OS to swap individual pages/segments to disk
• Saves memory for infrequently used code or data
• What happens if program accesses non-resident memory?

Slide 4

Typical Virtual Address Space Layout (UNIX):

code
(text) data bss DLLs stack kernel

0 max

➜ 0-th page typically not used

➜ text segment is read-only

➜ data segment is initialised data (partially R/O)

➜ bss segment is uninitialised data (heap), can grow

➜ shared libraries (DLLs) allocated in free middle region

➜ stack at top of user space, grows downward

➜ kernel space is in reserved (shared) region

MIPS R3000 ADDRESS SPACE LAYOUT 2

Slide 5

MIPS R3000 ADDRESS SPACE LAYOUT

kseg3

0xC0000000

0xFFFFFFFF

kseg2
0xA0000000

kseg1
0x80000000

kuseg

0x00000000

kuseg:
➜ 2 Gigabytes
➜ Dynamically mapped
➜ User-mode and kernel acces-

sible
➜ Page-size: 4k

Slide 6

MIPS R3000 ADDRESS SPACE LAYOUT

kseg3

0xC0000000

0xFFFFFFFF

kseg2
0xA0000000

kseg1
0x80000000

kuseg

0x00000000

kseg1:
➜ 512 MBytes
➜ Fixed mapping to physical

memory:

• physical to virtual address:
adding/subtracting fixed
offset

➜ Cacheable
➜ Only kernel-mode accessible
➜ Usually where the kernel code

is placed

MIPS R3000 ADDRESS SPACE LAYOUT 3

Slide 7

MIPS R3000 ADDRESS SPACE LAYOUT

kseg3

0xC0000000

0xFFFFFFFF

kseg2
0xA0000000

kseg1
0x80000000

kuseg

0x00000000

kseg2:
➜ 512 MBytes
➜ Fixed mapping to physical

memory:

• physical to virtual address:
adding/subtracting fixed
offset

➜ Not cacheable
➜ Only kernel-mode accessible
➜ Boot ROM and device access

Slide 8

MIPS R3000 ADDRESS SPACE LAYOUT

kseg3

0xC0000000

0xFFFFFFFF

kseg2
0xA0000000

kseg1
0x80000000

kuseg

0x00000000

kseg2:
➜ 1024 MBytes
➜ VM mapped
➜ Cacheable
➜ Only kernel mode accessible

MIPS R3000 ADDRESS SPACE LAYOUT 4

Slide 9

Page table for process address space:

VM

text

stack

data

0x00000
0x01000
0x02000
0x03000
0x04000
0x05000
0x06000
0x07000
0x08000
0x09000
0x0a000
0x0b000
0x0c000
0x0d000
0x0e000
0x0f000

PM

0x00000
0x01000
0x02000
0x03000
0x04000
0x05000
0x06000
0x07000
0x08000

text

stack 1

data 0

stack 0

data 1

−

−

−

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

−
4
2
7
−
−
−
−
−
−
−
−
−

5
−

0

frame #

PT

V
0
1

0
0
0
0
0
0
0
0
0
0

1

1
1

1

M
0
0

0
0
0
0
0
0
0
0
0
0

0

1
1

1

Slide 10

SHARED PAGES

➜ Private code and data

• Each process has own copy of code and data
• Code and data pages can appear anywhere in the VAS

➜ Shared code

• Single copy of code shared between all processes
executing it

• Code must be “pure” (re-entrant), i.e., not self-modifying
• Code must appear at same address in all processes

– Alternative: Position independent code
(generally used for shared libraries)

SHARED PAGES 5

Slide 11

Example: Shared pages:

data 27

6

5

ed 24

ed 13

2

data 11

0

3

4

6

1

page table

for P1

process P1

data 1

ed 2

ed 3

ed 1

3

4

6

2

page table

for P3

process P3

data 3

ed 2

ed 3

ed 1

3

4

6

7

page table

for P2

process P2

data 2

ed 2

ed 3

ed 1

8

9

10

data 3

ed 3

Slide 12

Page table structure:

➜ Page table is (logically) a mapping from page numbers to
frame numbers

➜ Each page-table entry (PTE) also has

• A valid bit (or present bit), indicating that there is a valid
mapping for the page

• A modified bit (also called dirty bit), indicating that the page
may be modified in memory

SHARED PAGES 6

Slide 13

Referencing an invalid page triggers a page fault:

➜ illegal address (protection error)

➜ page not resident, needs to be swapped in:

➀ get empty frame
➁ load page
➂ update page table (enter frame #, set V , reset M)
➃ restart faulting instruction

Slide 14

ADDRESS TRANSLATION (PAGING)
➜ Every (virtual) memory address issued by CPU must be

translated to physical

• every load or store instruction
• every instruction fetch

➜ Need translation hardware

➜ In paging system, translation involves replacing page # by
frame #

Virtual Address

Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address

Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseOther Control Bits

P= present bit
M = Modified bit

ADDRESS TRANSLATION (PAGING) 7

Slide 15

Address translation in a paging system:

Page # Offset Frame #

Virtual Address

Page
Frame

Offset

Offset

Program Paging Mechanism Main Memory

P
ag

e#

Page Table Ptr

Register

Page Table

Frame #

+

Slide 16

PAGE TABLES

Assume we have
➜ 32 bit virtual addresses (4 GByte address space)

➜ 4 KByte page size (212)

➜ How many entries can the page table have for one process?

Problem:

➜ Page table is very large

➜ Access has to be fast, lookup for every memory reference

➜ Where to store the page table?

- register?
- main memory?

PAGE TABLES 8

Slide 17

PAGE TABLES

➜ Most processes do not use a full 4GB address space

• e.g., 0.1–1MB text, 0.1–10MB data, 0.1MB stack

➜ Need compact representation that doesn’t waste space

➜ Three basic schemes:

• use data structures which adapt to sparsity
• use data structures which only represent resident pages
• use VM techniques for page tables

Slide 18

Two-level page table (32-bit address spaces):

(a)

(b)

Top-level

page table

Second-level

page tables

To

pages

Page

table for

the top

4M of

memory

6

5

4

3

2

1

0

1023

6

5

4

3

2

1

0

1023

Bits 10 10 12

PT1 PT2 Offset

➜ Note: Unused PT pages not allocated (NULL pointer in root
page table)

PAGE TABLES 9

Slide 19

Address translation with 2-level PT (2LPT)::

10 bits10 bits 12 bits

Root page
table ptr

Frame #

Virtual Address

4-kbyte page
table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

Page
Frame

Offset

+ +

Program Paging Mechanism Main Memory

Slide 20

Alternative: Inverted page table

Page # Offset

Frame #

Frame #

Virtual Address

(hash)

Hash Table

Page # Chain

Inverted Page Table Real Address

Page Table
Entry

Offset

Frame #

Frame #Page #

Page #

F
ra

m
e

#

F
ra

m
e

#

match

match

Inverted Page Table (Frame Table)Hash Anchor Table

PAGE TABLES 10

Slide 21

Inverted page table (IPT) operation:

➜ “Inverted page table” is an array of page numbers sorted by
frame number (it’s a frame table)

➜ Algorithm:
➀ Compute hash of page number (usually least significant bits)
➁ us this to index into the hash anchor table (HAT)
➂ HAT contains candidate frame number
➃ use this to index into frame table
➄ match the page number in FT entry to original
➅ if match, use frame # for translation
➆ if no match, get next candidate frame # from chain field
➇ if NULL chain entry⇒ page fault

Slide 22

PROPERTIES OF INVERTED PAGE TABLES

➜ IPT grows with size of RAM, not virtual address space!

➜ Frame table is needed anyway (for page replacement)

➜ Need separate data structure for non-resident pages

➜ Saves vast amount of space (esp. in 64bit Address systems)

➜ Searching does not come for free—efficiency?

➜ Currently used in some IBM and HP workkstations

PROPERTIES OF INVERTED PAGE TABLES 11

Slide 23

Alternative: Virtual linear array page table:

• Assume a 2-level PT

• Assume 2nd level PT nodes are in virtual memory

• Assume all 2nd level nodes are allocated contiguously
⇒ 2nd level nodes then form a contiguous array

4−kbyte root
page table

4−Mbyte page table
4−Gbyte virtual address space

Slide 24

Virtual linear array page table operation:
4−kbyte root
page table

4−Mbyte page table
4−Gbyte virtual address space

➜ Index into 2nd level page table without referring to root PT!

➜ Simply use the full page number as the PT index!

➜ Leave unused parts of PT unmapped!

➜ If access is attempted to unmapped part of PT, a secondary
page fault is triggered

• This will load the mapping for the PT from the root PT
• Root PT is kept in physical memory (cannot trigger page

faults)

PROPERTIES OF INVERTED PAGE TABLES 12

Slide 25

Problem:
➽ Each virtual memory reference can cause two physical

memory accesses

• one to fetch the page table entry
• one to fetch/store the data
⇒ Intolerable performance impact!

Solution:

➽ High-speed cache for page table entries (PTEs)

• Called the translation lookaside buffer (TLB)
• Contains recently used page table entries
• Associative high-speed memory, similar to a memory cache
• May be under OS control (unlike memory cache)

Slide 26

TRANSLATION LOOKASIDE BUFFER

➜ Given a virtual address, processor examines the TLB

➜ If matching PTE is found (TLB hit), the address is translated

➜ Otherwise (TLB miss), the page number is used to index the
process page table

• If PT contains a valid entry, reload TLB and restart
• Otherwise (page fault) check if page is on disk

– If on disk, swap in
– Otherwise allocate a new page

or raise an invalid address exception

TRANSLATION LOOKASIDE BUFFER 13

Slide 27

TLB operation::

Page # Offset

Frame #

Virtual Address

Offset

Offset

Load
page

Page Table

Main Memory
Secondary
Memory

Real Address

Translation
Lookaside Buffer

TLB hit

TLB miss

Page fault

Slide 28

TLB properties:

➜ TLB entries contain (per-page) write-protect bits

➜ TLB may or may not be under OS control:

• Hardware-loaded TLB:

– On miss, hardware performs PT lookup and reloads TLB
– Example: Pentium, most 32-bit architectures, PowerPC

• Software-loaded TLB:

– On miss, hardware generates a TLB miss exception,
and exception handler reloads TLB.

– Example: MIPS, and most modern architectures

➜ TLB size: typically 64–128 entries

➜ Modern architectures generally have separate TLBs for
instruction fetch and data access

➜ TLB can also be used for inverted page tables

PAGE TABLES AND THE TLB 14

Slide 29

PAGE TABLES AND THE TLB
➜ Page table is (logically) an array of frame #’s

indexed by page #

➜ The TLB holds a (recently used) subset of PT entries

• each TLB entry must be identified (tagged) with the page # it
translates

• access is by associate lookup:

– all TLB entries’ tags are concurrently compared to the
page #

• TLB is associative (or context-addressable) memory

page # frame # V W

· · · · · · · ·

· · · · · · · ·

Slide 30

Page tables and the TLB:

➜ TLB is a shared piece of hardware

➜ Page tables are per-process (address space)

➜ TLB entries are process-specific

Solutions:

➀ On context switch need to flush the TLB
(invalidate all entries)

• high context-switching overhead (ix86)

➁ or tag entries with address-space ID (ASID)

• called a tagged TLB
• used (in some form) on all modern architectures
• TLB entry: ASID, page #, frame #, valid and write-protect bits
• On TLB load:

– construct entry on-the-fly from data in PTE, or
– load a complete TLB entry from PT

PAGE TABLES AND THE TLB 15

Slide 31

Example: MIPS R4x00 TLB entry (32-bit mode): (R3000 similar,
see Hardware Guide on course web page)

MASK 0

109

13127

127 121 96

C0_PAGEMASK

0 ASID

75

1 4 8

G

19

VPN2

95 6477 72

C0_ENTRYHI

GVDCPFN

3238 35

11132 24

0

63 62

C0_ENTRYLO1

GVDCPFN

1113

036

2 24

0

31 30

C0_ENTRYLO0

Slide 32

Explanation:
➜ Current TLBE is mirrored in CP0 registers CO PAGEMASK, C0 ENTRYHI,

C0 ENTRYLO1, C0 ENTRYLO0

➜ Each entry (of 48) maps a pair of pages (buddies)
with common value of VPN2 (= virtual page #/2)

• ENTRYLO0 maps page (2×VPN2)

• ENTRYLO1 maps page (2×VPN2+1)

MASK defines size of page (0: page size is 4kB)

ASID address-space ID tag

PFN physical frame number

C page cacheability/coherency

D dirty: page is writable

V mapping is valid

G global: ignore ASID (in tag word in TLB, in ENTRYLO in CP0)

0 must be zero

PAGE TABLES AND THE TLB 16

Slide 33

MIPS addressing (highly simplified)::

➜ virtual addressing:

• addresses in the bottom half of the VAS (<0x8000 0000)
are translated by the TLB

➜ quasi-physical addressing:

• addresses in the upper half of the VAS (≥0x8000 0000)
are translated by masking out the top bits:

pa = va&0xfffffff

• these addresses are called kseg0 addresses
• kseg0 addresses are only available in kernel mode
• typical use: (pa+K0SEG BASE) to refer to pa

• used e.g. by exception handlers

Slide 34

Exception handling on MIPS:
➜ MIPS has 4 different exception handlers:

• 32-bit mode fast TLB miss handler TLB

– at PA 0x000 (VA 0x8000 0000)
– unless already in exception mode

• 64-bit mode fast TLB miss handler XTLB

– at PA 0x080 (VA 0x8000 0080)
– unless already in exception mode

• cache error handler CACHE

– at PA 0x100 (VA 0x8000 0100)
• general exception handler GENERAL

– at PA 0x180 (VA 0x8000 0180)
– all other exceptions
– including TLB exceptions in exception mode

PAGE TABLES AND THE TLB 17

Slide 35

32-bit TLB miss handling on MIPS (simplified):

➜ TLB refill exception: TLB miss in non-exception mode

➜ MIPS processor does the following:

CP0.EPC ← PC

CP0.CAUSE.ExcCode ← TLBL ; if read fault

CP0.CAUSE.ExcCode ← TLBS ; if write fault

CP0.BadVaddr ← faulting address

CP0.EntryHi.VPN2 ← faulting address/(2*pagesize)

CP0.STATUS.EXL ← 1 ; enter exception mode

CP0.PC ← 0x8000 0000 ; fast TLB miss handler

Note: ASID is already contained in CP0.EntryHi.ASID

Slide 36

TLB miss handling...:

➜ Software does:
➀ Look up PTE corresponding to fault address
➁ if found:

➀ load C0 ENTRYLO0 and C0 ENTRYLO1 with translations
➁ load TLB using tlbwr instruction
➂ return from exception

➂ else handle page fault

➜ TLB entry (i.e., C0 ENTRYLO0, C0 ENTRYLO1) can be:

• created on the fly, or
• stored completely and in the right format in the PT

PAGE TABLES AND THE TLB 18

Slide 37

Other TLB exceptions:

➜ vectored to GENERAL handler:

• TLB invalid: entry exists but V flag off
• TLB modified: write to page with D flag off

➜ Processor handles as for TLB miss, except:
CP0.CAUSE.ExcCode ← TLBL ; if read invalid fault

CP0.CAUSE.ExcCode ← TLBS ; if write invalid fault

CP0.CAUSE.ExcCode ← Mod ; if write protect fault

CP0.PC ← 0x8000 0180 ; gen excpt handler

➜ Software must:

• interpret and fix the cause of the invalid access
• fix PT entry
• reload TLB

Slide 38

OS/161 Refill Handler:

➜ Switches to kernel stack

➜ Calls common exception handler

• Unoptimised
• Written for ease of kernel programming, not efficiency

➜ Does not have a page table

• If 64 TLB entries are full, kernel panics
• supports only 256K user-level address space

SEGMENTATION 19

Slide 39

SEGMENTATION

➜ Variable-sized segments instead of fixed-size pages

➜ Size may be dynamic (changeable at run time)

➜ Natural support for modularisation (dynamic libraries)

➜ Lends itself to sharing along logical module boundaries

➜ Lends itself to module-based protection

➜ External fragmentation but no internal fragmentation

➜ Introduce a non-linear address space (segment #, offset)

➜ Per-process segment table instead of page table

Slide 40

Protection using segments:

Main MemoryAddress

Dispatcher

Process A

Process B

Process C

0

20K

No access
allowed

Branch instruction
(not allowed)

Reference to
data (allowed)

Reference to
data (not allowed)

35K

50K

80K
90K

140K

190K

X

X

X

SEGMENTATION 20

Slide 41

Flat vs. segmented address space::

main text

lib3 text

lib2 text

lib1 text

stack

data

main R/O data

0

6

5

4

3

2

1

7

seg #:

code
(text) data bss DLLs stack

flat address space segmented adr. space

no protection... protection...

...against segment overrun

Slide 42

Segment Tables:
➜ Translates segment number to main memory address

➜ Each entry contains:

• physical start address of segment
• segment length
• valid bit
• dirty bit

Virtual Address

Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address

Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseOther Control Bits

P= present bit
M = Modified bit

SEGMENTATION 21

Slide 43

Address translation in a segmentation system:

Seg #

Se
g#

Offset = d

Seg Table Ptr

Virtual Address

Register

Segment Table

Segment Table

Length Base

Se
gm

en
t

Base + d

d

+

+

Program Segmentation Mechanism Main Memory

Slide 44

COMBINED PAGING AND SEGMENTATION

➜ Paging is transparent to the programmer

➜ Paging eliminates external fragmentation

➜ Paging supports (relatively) fine-grain memory management

➜ Segmentation is visible to the programmer

➜ Segmentation allows for growing data structures, modularity,
and module-based support for sharing and protection

➜ Combination: Segments broken into fixed-size pages

➜ Examples: Pentium, PowerPC, HP PA-Risc, IA-64

COMBINED PAGING AND SEGMENTATION 22

Slide 45

Combined segmentation and paging:

➜ Per-process segment table

➜ Per-segment page table

Virtual Address

Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address

Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseOther Control Bits

P= present bit
M = Modified bit

Slide 46

Address translation with paged segments:

Page #Seg #

Se
g#

Offset

Seg Table Ptr

Frame #

Virtual Address

Segment
Table

Page
Table

Page
Frame

Offset

Offset

+ +

P
ag

e#

Program Segmentation
Mechanism

Paging
Mechanism

Main Memory

ADDRESS-SPACE SWITCH 23

Slide 47

ADDRESS-SPACE SWITCH

➜ The address space is defined by page or segment table(s)

➜ Part of that information is cached in the TLB

➜ Data and instructions are cached in the CPU caches

➜ Switching AS (during a context switch):

• The page/segment table pointer needs to be changed
• if the TLB is tagged:

– The ASID register needs to be reloaded (C0 TLBHI on MIPS)
• otherwise:

– The TLB must be flushed (all entries invalidated)
• if the CPU caches are not tagged:

– The caches must be flushed

Slide 48

DEMAND PAGING/SEGMENTATION

➜ With VM, only parts of the program image need to be resident
for execution

➜ Can swap presently unused pages/segments to disk

➜ Reload non-resident pages/segments on demand

• Reload is triggered by a page or segment fault
• Faulting process is blocked and another scheduled
• When page/segment is resident, faulting process is restarted
• May require freeing up memory first

– Replace currently resident page/segment
– How determine replacement “victim”?

• If victim is unmodified (“clean”) can simply discard

– This is the reason for maintaining the “dirty” bit in the PT

DEMAND PAGING/SEGMENTATION 24

Slide 49

Why does demand paging/segmentation work?

➜ Program executes at full speed while only accessing resident set
of pages or segments

➜ TLB miss introduces delay of several micro-seconds

➜ Page/segment fault introduces delay of several milli-seconds

➜ Why do it?

Answers:

➀ Less physical memory required per process

⇒ can fit more processes into memory
⇒ improved chance of finding a runnable process

➁ Principle of locality

Slide 50

Principle of Locality:
➜ Process’ program and data references tend to cluster

➜ Only a small number of pages/segments will be needed during
a (short) time window

• Called the memory working set of a process

➜ System keeps at least working set of process resident

➽ process can execute while it stays within working set
• Working set tends to change gradually

– Get only a few page/segment faults during time window
• Possible to make intelligent guesses about which pieces will

be needed in the future

– May be able to pre-fetch pages/segments

DEMAND PAGING/SEGMENTATION 25

Slide 51

Thrashing:

➜ CPU utilisation tends to increase with the degree of
multiprogramming

• number of processes in the system

➜ Higher degree of multiprogramming—less memory available
per process

➜ Some process’s working sets may no longer fit in RAM

➽ increasing page fault rate

➜ Eventually many processes have insufficient memory

- can’t always find runnable process
- decreasing CPU utilisation
- system is I/O limited

➜ This is called thrashing

Slide 52

Thrashing...:

degree of multiprogramming

C
P

U
 u

til
iz

at
io

n thrashing

Thrashing: Σ resident sets < Σ working sets

DEMAND PAGING/SEGMENTATION 26

Slide 53

Remember this?:

void ResetArray (int array[10000][10000]) {

int i, j;

for (i=0; i<10000; i++) {

for (j=0; j<10000; j++) {

array[i][j] = 0;

/* OR array[j][i] = 0 ??? */

}

}

}

What’s the difference?

Slide 54

VM MANAGEMENT POLICIES

Operation and performance of VM system is dependent on
a number of policies:

➜ Page table format (may be dictated by hardware)

• multi-level
• hashed

➜ Page size (may be dictated by hardware)

➜ Fetch policy

➜ Replacement policy

➜ Resident set size

• minimum allocation
• local vs global allocation

➜ Page cleaning policy

➜ Degree of multiprogramming ...

PAGE S IZE 27

Slide 55

PAGE SIZE

Increasing page size:
✘ increases internal fragmentation

- reduces adaptability to working set

✔ decreases number of pages
- reduces size of page tables

✔ increases TLB coverage
- reduces number of TLB misses

✘ increases page fault latency
- need to read more from disk before restarting process

✔ increases swapping I/O throughput
- small I/Os are dominated by seek time/rotational delays

Optimal page size is a (workload-dependent) tradeoff!

Slide 56

Example Page Sizes:

Architecture Page Size

Atlas 512 words (48-bit)

Honeywell/Multics 1k words (36-bit)

IBM 370/XA, 370/ESA 4k bytes

DEC VAX 512 bytes

IBM AS/400 512 bytes

Intel Pentium 4k and 4M bytes

ARM 4k and 64k bytes

MIPS R4x00 4k–16M bytes in powers of 4

DEC Alpha 8k–4M bytes in powers of 8

UltraSPARC 8k–4M bytes in powers of 8

PowerPC 4k bytes plus “blocks”

Intel IA-64 4k–256M bytes in powers of 4, etc

PAGE S IZE 28

Slide 57

Page Size:
➜ Multiple page sizes provide the flexibility to optimise the use of

the TLB

➜ E.g.:

• large pages can be used for code
• small pages for thread stacks

➜ Most operating system support only one page size

• Dealing with multiple page sizes is hard!

Slide 58

FETCH POLICY

➜ Determines when a page should be brought into memory

• Demand paging only loads pages in response to page faults

– Many page faults when process first started
• Pre-paging brings in more pages than needed at the

moment

– improve I/O performance by reading larger chunks
– pre-fetch when disk is idle
– wastes I/O bandwidth if pre-fetched pages aren’t used

BASIC REPLACEMENT POLICIES 29

Slide 59

REPLACEMENT POLICY

➜ Which page is chosen to be tossed out?

• Page removed should be the page least likely to be
referenced in the near future

• Most policies attempt to predict the future behavior on the
basis of past behaviour

➜ Constraint: locked frames:

• kernel code
• main kernel data structures
• I/O buffers
• performance-critical user pages (e.g. for DBMS)

➜ Frame table has lock bit

Slide 60

BASIC REPLACEMENT POLICIES

Optimal:

➜ Toss the page that won’t be used for the longest time

➜ Impossible to implement

➜ Only good as a theoretical reference point:

• The closer a practical algorithm gets to optimal, the better

Example:

➜ reference string: 1 2 3 4 1 2 5 1 2 3 4 5

➜ four frames

➜ how many page faults?

BASIC REPLACEMENT POLICIES 30

Slide 61

Basic Replacement Algorithms: FIFO:

➜ First-in, first-out: Toss oldest page

✔ Easy to implement
✘ Age of a page isn’t necessarily related to its usage

Example:

➜ reference string: 1 2 3 4 1 2 5 1 2 3 4 5

➜ four frames

➜ how many page faults?

➜ three frames

Belady’s anomaly: more frames 6⇒ fewer page faults

Slide 62

Basic Replacement Algorithms: LRU

➜ Toss least recently used page

• Assumes that a page that hasn’t been referenced for a long
time is unlikely to be referenced in the near future

• Will work if locality holds
• Implementation requires time stamp to be kept for each

page, updated on every reference
• Impossible to implement efficiently
• Most practical algorithms are approximations of LRU

How many page faults for example sequence?

➜ reference string: 1 2 3 4 1 2 5 1 2 3 4 5

BASIC REPLACEMENT POLICIES 31

Slide 63

Basic Replacement Algorithms: Clock

➜ Clock policy, also called second chance

• Employs a usage or reference bit in frame table
• Set to one when page is used
• When scanning for a victim, reset all reference bits
• Toss first page with zero reference bit.

➜ How do we know when a page has been referenced?

➜ Use the valid bit in the PTE:

• when page is mapped (valid bit set), set reference bit
• when resetting reference bit, invalidate PTE entry
• on TLB fault:

– turn on valid bit in PTE
– turn on reference bit in frame table

Slide 64

Example of operation of clock policy:

0

6

1

2

3

4

5

7

8

n — 1

n — 1

¥
¥

¥

page 19
use = 1

page 1
use = 1

next frame
pointer

page 45
use = 1

page 191
use = 1

page 556
use = 0

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(a) State of buffer just prior to a page replacement

0

6

1

2

3

4

5

7

8

¥
¥

¥

page 19
use = 1

page 1
use = 0

page 45
use = 0

page 191
use = 0

page 727
use = 1

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(b) State of buffer just after the next page replacement

First frame in
circular buffer of
frames that are
candidates for replacement

0

6

1

2

3

4

5

7

8

n — 1

n — 1

¥
¥

¥

page 19
use = 1

page 1
use = 1

next frame
pointer

page 45
use = 1

page 191
use = 1

page 556
use = 0

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

0

6

1

2

3

4

5

7

8

¥
¥

¥

page 19
use = 1

page 1
use = 0

page 45
use = 0

page 191
use = 0

page 727
use = 1

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(b) State of buffer just after the next page replacement

First frame in
circular buffer of
frames that are
candidates for replacement

PERFORMANCE 32

Slide 65

PERFORMANCE

0
6 8

Number of Frames Allocated

P
ag

e
F

ra
m

es
 p

er
 1

00
0

R
ef

er
en

ce
s

10 12 14

5

10

15

20

25

30

35
FIFO

CLOCK

LRU

OPT

40

Slide 66
Note: there are other algorithms (working set, ageing, NFU,
. . .) — we don’t expect you to know them in this course)

PERFORMANCE 33

Slide 67

Basic Replacement Algorithms: Page buffering

➜ Replace pages before running out of memory

➜ “Replaced” frame is added to one of two lists

• free-frame list if page has not been modified
• modified-frame list if dirty

➜ clean (write back) modified frames asynchronously

• migrates frames from modified to free list

➜ when in need of a frame, get it from free-frame list

➜ on page fault check both lists first

Slide 68

RESIDENT SET SIZE

➜ Fixed allocation

• gives a process a fixed number of pages within which to
execute

• when a page fault occurs, one of the pages of that process
must be replaced

➜ Variable allocation

• number of pages allocated to a process varies over the
lifetime of the process

RESIDENT SET S IZE 34

Slide 69

Variable Allocation, Global Scope:

➜ Easiest to implement

➜ Adopted by many operating systems

➜ Operating system keeps list of free frames

➜ Free frame is added to resident set of process when a page
fault occurs

➜ If no free frame, replaces one from any process

Slide 70

Variable Allocation, Local Scope:

➜ Allocate number of page frames to new processes based on

• application type
• program request,
• other criteria...

➜ When page fault occurs, select page from among the resident
set of the process that suffers the fault

➜ Reevaluate allocation from time to time

CLEANING POLICY 35

Slide 71

CLEANING POLICY

➜ Demand cleaning

• a page is written out only when it has been selected for
replacement

➜ Precleaning

• pages are written out in batches
• generally used with frame buffering

Slide 72

LOAD CONTROL (DEGREE OF MULTIPROGRAMMING)
➜ Determines the number of runnable processes

➜ Controlled by:

• Admission control:

– only let new process’s thread proceed from new to ready
state if enough memory available

• Suspension:

– move all threads of some processes into special
suspended state

– swap complete process image of suspended processes to
disk

➜ Tradeoff:

• Too many processes will lead to thrashing
• Too few will lead to idle CPU/excessive swapping

LOAD CONTROL (DEGREE OF MULTIPROGRAMMING) 36

