Interactive Scheduling

TSR] THE UNIVERSITY OF
‘g NEW SOUTH WALES

Two Level Scheduling

* Interactive systems commonly employ
two-level scheduling

— CPU scheduler and Memory Scheduler

 Memory scheduler was covered in VM
— We will focus on CPU scheduling

SEL THE UNIVERSITY OF
S| NEW SOUTH WALES

Round Robin Scheduling

« Each process is given a timeslice to run in

* WWhen the timeslice expires, the next
process preempts the current process,
and runs for its timeslice, and so on

* Implemented with
— A ready queue
— A regular timer interrupt

SErY THE UNIVERSITY OF 3
S| NEW SOUTH WALES

Our Earlier Example

* 5 Process
J1 _
— Process 1 arrives
slightly before process
12 2, efc...
J3 — All are immediately
runnable
J4 — Execution times
iIndicated by scale on
j5 X-axis

0 2 4 6 8 10 12 14 16 18 20

SErY THE UNIVERSITY OF 4
B NEW SOUTH WALES

Round Robin Schedule

J1

J2

Timeslice = 1 unit

J3

J4

J5

0 2 4 6 8 10 12 14 16 18

Round Robin Schedule

J1

12 Timeslice = 3 units

J3

J4

J5

0 2 4 6 8 10 12 14 16 18

Round Robin
* Pros

— Fair, easy to implement

« Con
— Assumes everybody is equal

* |ssue: What should the timeslice be?

— Too short
» Waste a lot of time switching between processes

« Example: timeslice of 4ms with 1 ms context switch = 20% round
robin overhead

— Too long
« System is not responsive

« Example: timeslice of 100ms

— If 10 people hit “enter” key simultaneously, the last guy to run will only
see progress after 1 second.

* Degenerates into FCFS if timeslice longer than burst length

WL THE UNIVERSITY OF !
@S NEW SOUTH WALES

Priorities

« Each Process (or thread) is associated with a
priority

* Provides basic mechanism to influence a
scheduler decision:
— Scheduler will always chooses a thread of higher

priority over lower priority

 Priorities can be defined internally or externally
— Internal: e.g. I/O bound or CPU bound
— External: e.g. based on importance to the user

"‘I. NEW SOUTH WALES

Example

* 5 Jobs
= — Job number equals
” prl.orl.ty -
— Priority 1 > priority 5
J3 — Release and execution
times as shown
J4 * Priority-driven
preemptively
15 scheduled

0 2 4 6 8 10 12 14 16 18 20

SErY THE UNIVERSITY OF 9
B NEW SOUTH WALES

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

10

20

J1

J2

J3

J4

Example

J5

0

2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

12

14

16

18

11

20

Example

J1
J2 E
W
J4
J5 |

0o 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

12

20

J1

J2

J3

J4

Example

J5

0

2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

12

14

16

18

13

20

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

12

14

16

18

14

20

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

15

20

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

16

20

J1

J2

J3

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

10

12

14

16

18

17

20

Example

J1

J2

J3

J4

J5

0 2 4 6 8 10 12

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

J1

J2

J3

mple

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

10

12

14

16

18

19

20

Example

J1

J2

J3

J4

J5

0 2 4 6 8 10 12

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

21

20

Example

I3
12
I3 |
14
5 .

0 2 4 6 8 10 12

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

23

20

Example

= NEW SOUTH WALES

J1
J2 E
s
J4
J5 |
0 2 4 8 10 12 1451 16 18 20
B THE UNIVERSITY OF 24

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

25

20

Example

J1

J2

J3

J4

J5

0 2 4 6 8 10 12

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

27

20

Example

J1

J2

J3

J4

J5

0 2 4 6 8 10 12

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

J1

J2

J3

Example

J4

J5

0 2

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

4

12

14

16

18

29

20

Example

= NEW SOUTH WALES

J1
J2 E
13
J4
J5 |
0 2 4 8 10 12 14 16 18 :20
B THE UNIVERSITY OF 30

Priorities

Queue Runable processes
headers , A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

« Usually implemented by multiple priority queues, with
round robin on each queue

e Con

— Low priorities can starve

* Need to adapt priorities periodically
— Based on ageing or execution history

L] THE UNIVERSITY OF .
G NEW SOUTH WALES

Traditional UNIX Scheduler

. Two-level scheduler Highest
. priority
— High-level scheduler é : ,QIJ_,
schedules processes :
between memory and = Waiting for disk /O O process wating
disk -3 Waiting for disk buffer in kernel mode
— Low-level scheduler is -2 Waiting for terminal input
CPU scheduler -1 Waiting for terminal output — D
. Based on a multi- 0 Waiting for child to exist /
level queue structure 0 User priority 0 1
with round robin at 1 User priority 1 —C OO
each level o Process waiting
2 User priority 2 in user mode
3 User priority 3 —(
~ : o~
Lowest

priority Process queued

on priority level 3

B THE UNIVERSITY OF 32

Traditional UNIX Scheduler

. The highest priority (lower
number) is scheduled
Highest

. Priorities are re-calculated once iy T 1 _—
per second, and re-inserted in T : T
appropriate queue

— Avoid starvation of low priority
threads

— Penalise CPU-bound threads

»)

-/
4 Waiting for disk 1/O — Process waiting
-3 Waiting for disk buffer in kernel mode
2
1

Waiting for terminal input

Waiting for terminal output —J

0 Waiting for child to exist Y
0 User priority O 1
1 User priority 1 —CO—

o Process waiting
2 User priority 2 hiser mass
3 User priority 3 —Q

~ . ~
Lowest’T/ . ’\r / Y

priority

Process queued
on priority level 3

L] THE UNIVERSITY OF >
G NEW SOUTH WALES

Traditional UNIX Scheduler

. Priority = CPU_usage +nice +base
— CPU _usage = number of clock ticks
. Decays over time to avoid Highest
permanently penalising the process priority |, L
— Nice is a value given to the process :
by a user to permanently boost or e MeEIHNGHIRTRLSK 1 —OO process waiting
reduce its priority -3 Waiting for disk buffer in kernel mode
. Reduce priority of background jobs 2

— Base is a set of hardwired, negative -1 Waiting for terminal output __[—C
values used to boost priority of I/O
bound system activities User priority 0

. Swapper, disk I/O, Character 1/O 1 User priority 1 — O

Process waiting

Waiting for terminal input

Waiting for child to exist Y

2 User priority 2 in user mode
3 User priority 3 —Q
~/ . ~y/
Lowest’T/ ’\r / ¥
priority Process queued
on priority level 3
THE UNIVERSITY OF 34

NEW SOUTH WALES

Some Issues with Priorities

* Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).

« Adaption is:

— usually ad-hoc,

* hence behaviour not thoroughly understood, and
unpredictable

— Gradual, hence unresponsive
Difficult to guarantee a desired share of the CPU

No way for applications to trade CPU time

SErY THE UNIVERSITY OF 35
S| NEW SOUTH WALES

Lottery Scheduling

« Each process is issued with “lottery
tickets™ which represent the right to
use/consume a resource

— Example: CPU time

* Access to a resource is via “drawing” a
lottery winner.

— The more tickets a process possesses, the
higher chance the process has of winning.

B THE UNIVERSITY OF 36

E NEW SOUTH WALES

Lottery Scheduling

* Advantages
— Simple to implement
— Highly responsive
 can reallocate tickets held for immediate effect

— Tickets can be traded to implement individual
scheduling policy between co-operating
threads

— Starvation free

* A process holding a ticket will eventually be
scheduled.

SErY THE UNIVERSITY OF 37
S| NEW SOUTH WALES

Example Lottery Scheduling

* Four process running concurrently
— Process A: 15% CPU
— Process B: 25% CPU
— Process C: 5% CPU
— Process D: 55% CPU

 How many tickets should be issued to
each?

SEL THE UNIVERSITY OF
%8 NEW SOUTH WALES

38

Lottery Scheduling Performance

Observed performance of =
two processes with 2] ’
varying ratios of tickets = o] :
P ;e
- ;.
g 5 R
? g
S __a
] *°
0 — 7 I |
0 2 4 6 8 10

Allocated Ratio

Figure 4: Relative Rate Accuracy. For each allocated ratio. the
observed ratio is plotted for each of three 60 second runs. The
eray line indicates the ideal where the two ratios are identical.

T THE UNIVERSITY OF >

30000 —

20000

10000 —

Average Iterations (per sec)

O L} ¥ ¥ ¥ I L} L} ¥ ¥

| |
100 150 200

Time (sec)

)
n
o

Figure 5: Fairness Over Time. Two tasks executing the Dhry-
stone benchmark with a 2 : 1 ticket allocation. Averaged over the
entire run, the two tasks executed 25378 and 12619 iterations/sec..
for an actual ratio of 2.01 : .

40

Fair-Share Scheduling

So far we have treated processes as individuals

Assume two users
— One user has 1 process
— Second user has 9 processes

The second user gets 90% of the CPU

Some schedulers consider the owner of the process in
determining which process to schedule

— E.g., for the above example we could schedule the first user’'s
process 9 times more often than the second user’s processes

Many possibilities exist to determine a fair schedule
— E.g. Appropriate allocation of tickets in lottery scheduler

= THE UNIVERSITY OF 41

B B NEW SOUTH WALES

