UNIX File Management

TSR] THE UNIVERSITY OF
‘g NEW SOUTH WALES

UNIX File Management

* We will focus on two types of files
— Ordinary files (stream of bytes)
— Directories

* And mostly ignore the others
— Character devices
— Block devices
— Named pipes
— Sockets
— Symbolic links

SEL THE UNIVERSITY OF
%8 NEW SOUTH WALES

UNIX index node (inode)

« Each file is represented by an Inode

* Inode contains all of a file’'s metadata
— Access rights, owner,accounting info
— (partial) block index table of a file

« Each inode has a unique number (within a partition)
— System oriented name
— Try ‘Is =i’ on Unix (Linux)

* Directories map file names to inode numbers
— Map human-oriented to system-oriented names

— Mapping can be many-to-one
* Hard links

e THE UNIVERSITY OF
W NEW SOUTH WALES

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(10)

single indirect

double indirect

triple indirect

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Inode Contents

* Mode
— Type

* Regular file or directory

— Access mode
* 'WXIwWXrwx

« Ulid

— User ID
+ Gid

— Group ID

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(10)

single indirect

double indirect

triple indirect

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Inode Contents

e atime
— Time of last access
e ctime

— Time when file was
created

* mtime

— Time when file was
last modified

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks
(10)

single indirect

double indirect

triple indirect

'_ THE UNIVERSITY OF

%Sl NEW SOUTH WALES

Inode Contents

« Size
— Size of the file in bytes

 Block count

— Number of disk blocks used by
the file.

* Note that number of blocks can
be much less than expected
given the file size

— Files can be sparsely
populated

« E.g. write(f,"hello”); Iseek(f,
1000000); write(f, “world”);

* Only needs to store the start
an end of file, not all the
empty blocks in between.

— Size = 1000005
— Blocks = 2 + overheads

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks (10)
40,58,26,8,12,
44,62,30,10,42

single indirect

double indirect

triple indirect

Inode Contents

Direct Blocks

— Block numbers of first 10
blocks in the file

— Most files are small

 We can find blocks of file

directly from the inode

0 7

3 18| .4
— 9 7
Ni\

O -9 5
\4\

56| |1 ~ 6 |63
Disk

Problem

 How do we store files greater than 10
blocks in size?
— Adding significantly more direct entries in the

inode results in many unused entries most of
the time.

SErY THE UNIVERSITY OF 3
S| NEW SOUTH WALES

mode
4 Inode Contents
9' « Single Indirect Block
atime — Block number of a block
ctime containing block numbers
mtime * |n this case 8
size
block count 14 0 Z
reference count 20 3 3 4 10
direct blocks (10)
40,58,26,8,12, 28 11
44.62,30,10,42 29 2 12113 7
single indirect: 32 38— | Sl 14
double indirect 46 0 9117| 5 15
triple indirect 61
43 56 1 16| 6 |63
e NEW SOUTH WALES Disk

»

Single Indirection

* Requires two disk access to read
— One for the indirect block; one for the target block

« Max File Size

— In previous example
« 10 direct + 8 indirect = 18 block file

— A more realistic example

* Assume 1Kbyte block size, 4 byte block numbers
« 10 * 1K+ 1K/4 * 1K = 266 Kbytes

« For large majority of files (< 266 K), only one or
two accesses required to read any block in file.

B THE UNIVERSITY OF 10
G| NEW SOUTH WALES

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks (10)
40,58,26,8,12,
44,62,30,10,42

single indirect: 32

double indirect

triple indirect

B THE UNIVERSITY OF

B NEW SOUTH WALES

Inode Contents

 Double Indirect Block

— Block number of a block
containing block numbers of
blocks containing block
numbers

* Triple Indirect

— Block number of a block
containing block numbers of
blocks containing block
numbers of blocks containing
block numbers ©

11

Unix Inode Block Addressing
Scheme

mode
2 owners
B} data T ™ data
2 timestamps
size - data] . data
block count - —
- data] !
J :
R B
direct blocks
(12) - data
- data data
single indirect - - data = data
double indirect -
triple indirect =
—1—=

THE UNIVERSITY OF
NEW SOUTH WALES

Max File Size

* Assume 4 bytes block numbers and 1K blocks

 The number of addressable blocks
— Direct Blocks = 12
— Single Indirect Blocks = 256
— Double Indirect Blocks = 256 * 256 = 65536
— Triple Indirect Blocks = 256 * 256 * 256 = 16777216

« Max File Size
— 12 + 256 + 65536 + 16777216 = 16843020 = 16 GB

SErY THE UNIVERSITY OF 13
S| NEW SOUTH WALES

Some Best and Worst Case

Access Patterns

 Toread 1 byte
— Best:

e 1 access via direct block

— Worst:
* 4 accesses via the triple indirect block
* To write 1 byte
— Best:

1 write via direct block (with no previous content)

— Worst:

4 reads (to get previous contents of block via triple indirect) +
1 write (to write modified block back)

SErY THE UNIVERSITY OF 14
S NEW SOUTH WALES

Worst Case Access Patterns with

Unallocated Indirect Blocks

« Worst to write 1 byte
— 4 writes (3 indirect blocks; 1 data)
— 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data)

— 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1;
write 1 data)

— 3 reads, 2 writes (read 2, read-write 1; write 1 data)

 Worst to read 1 byte
— If reading writes an zero-filled block on disk
« Worst case is same as write 1 byte

— If not, worst-case depends on how deep is the current indirect
block tree.

e THE UNIVERSITY OF 1o
el NEW SOUTH WALES

Inode Summary

* The inode contains the on disk data associated with a
file
— Contains mode, owner, and other bookkeeping
— Efficient random and sequential access via indexed allocation
— Small files (the majority of files) require only a single access

— Larger files require progressively more disk accesses for random
access
» Sequential access is still efficient

— Can support really large files via increasing levels of indirection

L] THE UNIVERSITY OF h
G NEW SOUTH WALES

Where/How are Inodes Stored

Boot | Super| Inode

Block | Block | Array Data Blocks

« System V Disk Layout (s5fs)
— Boot Block

 contain code to bootstrap the OS

— Super Block

« Contains attributes of the file system itself

— e.g. size, number of inodes, start block of inode array, start of
data block area, free inode list, free data block list

— Inode Array
— Data blocks

SErY THE UNIVERSITY OF 17
S NEW SOUTH WALES

Some problems with s5fs

Inodes at start of disk; data blocks end
— Long seek times
« Must read inode before reading data blocks
Only one superblock
— Corrupt the superblock and entire file system is lost

Block allocation suboptimal

— Consecutive free block list created at FS format time

 Allocation and de-allocation eventually randomises the list
resulting the random allocation

Inodes allocated randomly

— Directory listing resulted in random inode access
patterns

SErY THE UNIVERSITY OF 18
B NEW SOUTH WALES

Berkeley Fast Filesystem (FFS)

 Historically followed sb5fs
— Addressed many limitations with s5fs
— Linux mostly similar, so we will focus on Linux

THE UNIVERSITY OF 19
NEW SOUTH WALES

The Linux Ext2 File System

« Second Extended Filesystem
— Evolved from Minix filesystem (via “Extended Filesystem”)

« Features
— Block size (1024, 2048, and 4096) configured as FS creation

— Pre-allocated inodes (max number also configured at FS
creation)

— Block groups to increase locality of reference (from BSD
FFS)

— Symbolic links < 60 characters stored within inode
* Main Problem: unclean unmount >e2£sck

— Ext3fs keeps a journal of (meta-data) updates
— Journal is a file where updated are logged
— Compatible with ext2fs

= THE UNIVERSITY OF 20

B B NEW SOUTH WALES

Layout of an Ext2 Partition

Boot (Block Group Block Group
Block 0 o n

* Disk divided into one or more partitions
* Partition:
— Reserved boot block,

— Collection of equally sized block groups
— All block groups have the same structure

SErY THE UNIVERSITY OF 21
S| NEW SOUTH WALES

Layout of a Block Group

Group

Data

Super Descrip- | Block Ipode Inode Data blocks
Block : Bitmap | Table

tors Bitmap
1 blk n blks 1 blk 1 blk m blks k blks

* Replicated super block

— For e2fsck

Group descriptors
Bitmaps identify used inodes/blocks
All block have the same number of data blocks
Advantages of this structure:

— Replication simplifies recovery
— Proximity of inode tables and data blocks (reduces seek time)

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

22

Superblocks

« Size of the file system, block size and similar
parameters

Overall free inode and block counters

Data indicating whether file system check is
needed:

— Uncleanly unmounted

— Inconsistency

— Certain number of mounts since last check
— Certain time expired since last check

Replicated to provide redundancy to add
recoverability

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

23

Group Descriptors

* Location of the bitmaps
 Counter for free blocks and inodes in this

group
 Number of directories in the group

L THE UNIVERSITY OF 24

NEW SOUTH WALES

Performance considerations

« EXT2 optimisations

— Read-ahead for directories
 For directory searching

— Block groups cluster related inodes and data blocks

— Pre-allocation of blocks on write (up to 8 blocks)
* 8 bits in bit tables
 Better contiguity when there are concurrent writes

* FFS optimisations
— Files within a directory in the same group

SErY THE UNIVERSITY OF o5
S| NEW SOUTH WALES

Thus far...

* Inodes representing files laid out on disk.

* Inodes are referred to by number!!!
— How do users name files? By number?

— Try Is —i to see how useful inode numbers
are....

B THE UNIVERSITY OF 20

Ext2fs Directories

inode rec len [name len| type name...

» Directories are files of a special type

— Consider it a file of special format, managed by the kernel, that
uses most of the same machinery to implement it

* Inodes, etc...
* Directories translate names to inode numbers
 Directory entries are of variable length
* Entries can be deleted in place
— inode =0
— Add to length of previous entry
— use null terminated strings for names

e THE UNIVERSITY OF 2
el NEW SOUTH WALES

Ext2fs Directories

* “11” = inode 7
¢ “file2” = inode 43
 “f3” = inode 85

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

9 e

2000

85

12

300

Inode No
Rec Length
Name Length

Name

28

Ext2fs Directories

 Note that inodes
can have more
than one name

— Called a Hard Link

— Inode (file) 7 has
three names

e 11" = inode 7
e “file2” = inode 7
e« 3" = inode 7

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Inode No
Rec Length
Name Length

Name

29

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks (10)
40,58,26,8,12,
44,62,30,10,42

single indirect: 32

double indirect

triple indirect

B THE UNIVERSITY OF

gy NEW SOUTH WALES

Inode Contents

 We can have many name for the same inode.

 When we delete a file by name, i.e. remove
the directory entry (link), how does the file
system know when to delete the underlying
inode?
— Keep a reference count in the inode

« Adding a name (directory entry) increments the
count

 Removing a name decrements the count

» |f the reference count == 0, then we have no
names for the inode (it is unreachable), we can
delete the inode (underlying file or directory)

30

Ext2fs Directories

* Deleting a filename
— rm file2

SErY THE UNIVERSITY OF
sl NEW SOUTH WALES

Inode No
Rec Length
Name Length

Name

31

Ext2fs Directories

7 Inode No
* Deleting a filename — | 32 Rec Length
: 2 Name Length
— rmile2 100 Name
* Adjust the record
length to skip to next
valid entry
L » 7
— 12
2
300
L » O
: THE UNIVERSITY OF 32

Kernel File-related Data

Structures and Interfaces

 \We have reviewed how files and
directories are stored on disk

* We know the UNIX file system-call
interface

— open, close, read, write, Iseek

« What is in between?

B THE UNIVERSITY OF
P NEW SOUTH WALES

What do we need to keep track
of?
* File descriptors

— Each open file has a file descriptor

— Read/Write/lseek/.... use them to specify
which file to operate on.

* File pointer

— Determines where in the file the next read or
write is performed

* Mode
— Was the file opened read-only, etc....

SErY THE UNIVERSITY OF 34
S| NEW SOUTH WALES

An Option?

* Use inode numbers as file descriptors and
add a file pointer to the inode

* Problems

— What happens when we concurrently open
the same file twice?

* We should get two separate file descriptors and file
pointers....

B THE UNIVERSITY OF %

An Option?

» Single global open
file array

— fd is an index into
the array

— Entries contain file
pointer and pointer
to an inode

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

fd

I-ptr

> linode

36

Issues
fd

* File descriptor 1 is
stdout

— Stdout is | o

» console for some i-ptr > linode

Processes
* A file for others

* Entry 1 needs to be

different per
process!

B THE UNIVERSITY OF >

Per-process File Descriptor

Array

. Each process.has P1 f4
its own open file
array

— Contains fp, i-ptr etc.

— Fd 1 can be any
inode for each
process (console, P2fd
log file).

SErY THE UNIVERSITY OF
eS| NEW SOUTH WALES

> linode

inode

I-ptr

38

Issue

e Fork

_ Fork defines that the child P11 fd
shares the file pointer with
the parent

 Dup2 fp
— Also defines the file I-ptr — linode
descriptors share the file
pointer
« With per-process table, we inode
can only have independent P2 fd
file pointers

v

v

— Even when accessing the .
same file

I-ptr

=, = Cl THE UNIVERSITY OF 39

Per-Process fd table with global
open file table

Per-process file descriptor
array

— Contains pointers to open
file table entry
Open file table array
— Contain entries with a fp
and pointer to an inode.
Provides

— Shared file pointers if
required
— Independent file pointers
if required
Example:
— All three fds refer to the
same file, two share a file

pointer, one has an
independent file pointer

P1 fd

P2 fd

Per-process
File Descriptor
Tables

v

A 4

f-ptr —= fp
I-ptr L linode
f-ptr| — .fp inode
ptr I-ptr| —
f-ptr

Open File Table 40

Per-Process fd table with global
open file table

* Used by Linux and
most other Unix
operating systems

P1 fd

P2 fd

Per-process
File Descriptor
Tables

Open File Table 41

: f-ptr —I = fp
I-ptr ~ L linode
f-ptr| — .fp inode
ptr I-ptr| —
" f-ptr

Older Systems only had a single
file system

* They had file system specific open, close, read,
write, ... calls.

* The open file table pointed to an in-memory
representation of the inode
— inode format was specific to the file system used
(s5fs, Berkley FFS, etc)
 However, modern systems need to support
many file system types
— 1SO9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs

SErY THE UNIVERSITY OF 42
S| NEW SOUTH WALES

Supporting Multiple File

Systems

o Alternatives

— Change the file system code to understand
different file system types

* Prone to code bloat, complex, non-solution

— Provide a framework that separates file
system independent and file system
dependent code.

 Allows different file systems to be “plugged in”

* File descriptor, open file table and other parts of
the kernel can be independent of underlying file
system

SErY THE UNIVERSITY OF 43
S| NEW SOUTH WALES

Virtual File System (VFS)

* Provides single system call interface for many file
systems
— E.g., UFS, Ext2, XFS, DOS, ISO9660,...
« Transparent handling of network file systems
— E.g., NFS, AFS, CODA
* File-based interface to arbitrary device drivers (/dev)
* File-based interface to kernel data structures (/proc)

* Provides an indirection layer for system calls
— File operation table set up at file open time
— Points to actual handling code for particular type
— Further file operations redirected to those functions

e THE UNIVERSITY OF 44
el NEW SOUTH WALES

] User process

VES
architecture

l System call (trap)

System calls mterface

“‘x

Aimix BS Cos BFa

ext B3

ext? B3

\ S

Buffer Cache

/

Device davers

[/D request

[hsk controler

THE UNIVERSITY OF
NEW SOUTH WALES

Linnx K emel

Hardware

45

The file system independent code
deals with vfs and vnodes

P1 fd
: f-ptr —I = fp
v-ptr-——lz1
fp
P2 fd f—ptr o V-ptr _
" f-ptr
Per-process

File Descriptor

.: :__ THE UNIVE
s v soU Tables

Open File Table

inode

File system
dependent
code

____________§-_.____..
l

VFS Interface
 Reference

— S.R. Kleiman., "Vnodes: An Architecture for Multiple File System
Types in Sun Unix," USENIX Association: Summer Conference
Proceedings, Atlanta, 1986

— Linux and OS/161 differ slightly, but the principles are the same

« Two major data types

— Vfs
 Represents all file system types

« Contains pointers to functions to manipulate each file system as a
whole (e.g. mount, unmount)

— Form a standard interface to the file system
— vnode
 Represents a file (inode) in the underlying filesystem
 Points to the real inode

« Contains pointers to functions to manipulate files/inodes (e.g. open,
close, read, write,...)

L] THE UNIVERSITY OF Y
G NEW SOUTH WALES

A look at OS/161's VFS

_ Force the
The OS161’s file system type filesystem to
Represents interface to a mounted filesystem flush its content
to disk
struct fs { Retrieve the
int (*£s_sync) (struct fs *); volume name
const char *(*fs _getvolname) (struct fs ¥*);
struct vnode *(*fs getroot) (struct fs *)- Retrieve the vnode
int (*£s_unmount) (struct fs *); associates with the
root of the
filesystem

void *fs data;

}i Unmount the filesystem
Note: mount called via
Private file system function ptr passed to

o vEfs mount
specific date —

L] THE UNIVERSITY OF *
G NEW SOUTH WALES

Count the Number of
number of Vn Od e times vnode
“references” is currently
to this vnode open
struct wvnode { Lock for mutual
int vn refcount; exclusive
— access to
int vn opencount; counts
struct lock *Vn_countlock ;
struct f£s *vn fs; _ Pointer to FS
] — Pointer to FS containing
void *vn data; specific the vnode
- vhode data
(e.g. inode)

const struct vnode ops Eléops;

}; Array of pointers

to functions

operating on
vnodes 49

Access Vnodes via Vnode Operations

P1 fd

f-ptr

V-ptr —‘—> vhodeg —» inode

> fp
P2 fd f_ptr — v-ptr| —

" f-ptr

Ext2fs_read
Ext2fs_write

Vnode Ops

Open File Table 5

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Vnode Ops

struct vnode ops {
unsigned long vop magic; /* should always be VOP_MAGIC */

int (*vop_open) (struct vnode *object, int flags_from open);
int (*vop_close) (struct vnode *object);
int (*vop_reclaim) (struct vnode *vnode) ;

int (*vop_read) (struct vnode *file, struct uio *uio);

int (*vop_readlink) (struct vnode *link, struct uio *uio);
int (*vop_getdirentry) (struct vnode *dir, struct uio *uio);
int (*vop_write) (struct vnode *file, struct uio *uio);

int (*vop_ioctl) (struct vnode *object, int op, userptr_ t data);
int (*vop_stat) (struct vnode *object, struct stat *statbuf);
int (*vop_gettype) (struct vnode *object, int *result);

int (*vop_tryseek) (struct vnode *object, off t pos);

int (*vop_fsync) (struct vnode *object);

int (*vop_mmap) (struct vnode *file /* add stuff */);

int (*vop_truncate) (struct vnode *file, off t len);

int (*vop_namefile) (struct vnode *file, struct uio *uio);

THE UNIVERSITY OF
NEW SOUTH WALES

91

int (*vop_creat) (struct vnode *dir,

const char *name, int excl,
struct vnode **result);
int (*vop_symlink) (struct vnode *dir,
const char *contents, const char *name);
int (*vop_mkdir) (struct vnode *parentdir,
const char *name) ;
int (*vop_link) (struct vnode *dir,
const char *name, struct vnode *file);
int (*vop_remove) (struct vnode *dir,
const char *name) ;
int (*vop_rmdir) (struct vnode *dir,
const char *name);

int (*vop_rename) (struct vnode *vnl, const char *namel,
struct vnode *vn2, const char *name2);

int (*vop_lookup) (struct vnode *dir,
char *pathname, struct vnode **result)
int (*vop_lookparent) (struct vnode *dir,
char *pathname, struct vnode **result,
char *buf, size t len);

}MHE UNIVERSITY OF
NEW SOUTH WALES

Ops

Vnode Ops

* Note that most operation are on vnodes. How do
we operate on file names?

— Higher level APl on names that uses the internal
VOP_* functions

int vfs_open(char *path, int openflags, struct vnode **ret);
void vfs_close(struct vnode *vn);

int vfs_readlink(char *path, struct uio *data);

int vfs_symlink (const char *contents, char *path);

int vfs_mkdir (char *path);

int vfs_link(char *oldpath, char *newpath);

int vfs_remove (char *path);

int vfs_rmdir (char *path);

int vfs_rename (char *oldpath, char *newpath);

int vfs_chdir(char *path);
int vfs_getcwd(struct uio *buf);

L] THE UNIVERSITY OF >
G NEW SOUTH WALES

Example: OS/161 emufs vnode
ops

/%
* Function table for emufs emufs_file_gettype,
files. emufs tryseek,
* / emufs fsync,
static const struct vnode ops UNIMP, /* mmap */
emufs fileops = { emufs truncate,
VOP MAGIC, /* mark this a NOTDIR, /* namefile */

valid vnode ops table */
NOTDIR, /* creat */

emufs open, NOTDIR, /* symlink */
emufs close, NOTDIR, /* mkdir */
emufs reclaim, NOTDIR, /* link */
NOTDIR, /* remove */
emufs read, NOTDIR, /* rmdir */
NOTDIR, /* readlink */ NOTDIR, /* rename */
NOTDIR, /* getdirentry */
emufs write, NOTDIR, /* lookup */
emufs ioctl, NOTDIR, /* lookparent */

emufs stat, };

] User process

Buffer
Cache

l System call (trap)

System calls mterface

“‘x

Aimix BS Cos BFa

ext B3

ext? B3

\ S

Buffer

Zache

/

Device davers

[/D request

[hsk controler

THE UNIVERSITY OF
NEW SOUTH WALES

Linnx K emel

Hardware

95

Buffer

o Buffer:

— Temporary storage used when transferring
data between two entities
« Especially when the entities work at different rates
* Or when the unit of transfer is incompatible
« Example: between application program and disk

I -:'--_-: - THE UNIVERSITY OF o6

"‘I. NEW SOUTH WALES

Buffering Disk Blocks

« Allow applications to work with
arbitrarily sized region of a file

- Buffers — Apps can still optimise for a
Application _ rticular block si
Program in Kernel particular block size
RAM
Transfer of
arbitrarily
sized regions Tr?,\r,fg?er of 4 10
of file blocks 1 1
16| 6
g 115 OIS Disk

Buffering Disk Blocks

* Writes can return immediately
after copying to kernel buffer

Application Buffers — Avoids waiting until write to
Program in Kernel disk is complete
— Write is scheduled in the
RAM background

Transfer of
arbitrarily

sized regions Tr?l\r/fg?er of 4 10

h 12/13| 7

14

S 15

16| 6

gl VRN Disk

Buffering Disk Blocks

« Can implement read-ahead by
pre-loading next block on disk

rosicat Buffers into kernel buffer
iIcation
Sfogram in Kernel — Avo:ds h;yin_g to v(\j/ait until
next read is issue
RAM
Transfer of
arbitrarily
sized regions Tr?,\r,fg?er o 4 10
of file blocks 11
7
' ' 14
15
16| 6
T : 59
gl 111 DN Disk

Cache

 Cache:

— Fast storage used to temporarily hold data to
speed up repeated access to the data
« Example: Main memory can cache disk blocks

SErY THE UNIVERSITY OF 60
S| NEW SOUTH WALES

Caching Disk Blocks

« On access

Cached — Before loading block from disk,
blocks in check if it is in cache first
Application * Avoids disk accesses
Program Kernel

« Can optimise for repeated access
for single or several processes

RAM

Transfer of
arbitrarily

sized regions Tr?,\r,fg?er o 4 10
of file blocks 11
h 12/13| 7
14
S 15
16| 6
2 UMM Disk ~ °©

Buffering and caching are

related

« Data is read into buffer; extra cache copy
would be wasteful

 After use, block should be put in cache
* Future access may hit cached copy

« Cache utilises unused kernel memory
space; may have to shrink

B THE UNIVERSITY OF 62
: NEW SOUTH WALES

Unix Buffer Cache

On read

— Hash the
device#, block#
— Check if match in

buffer cache
— Yes, simply use
In-memory copy
— No, follow the
collision chain

— If not found, we
load block from
disk into cache

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Devlee List
Hash Tahle

Fres List
Polnter

Buffer Cache

Free Lt Polnters

Hash Polnters

o o

Replacement

 What happens when the buffer cache is full and
we need to read another block into memory?

— We must choose an existing entry to replace

— Similar to page replacement policy
« Can use FIFO, Clock, LRU, etc.

« Except disk accesses are much less frequent and take longer
than memory references, so LRU is possible
« However, is strict LRU what we want?

— What is different between paged data in RAM and file data in
RAM?

B THE UNIVERSITY OF o
G| NEW SOUTH WALES

File System Consistency

* Paged data is not expected to survive
crashes or power failures

* File data is expected to survive
« Strict LRU could keep critical data in

memory forever if it is frequently used.

SEL THE UNIVERSITY OF
el NEW SOUTH WALES

65

File System Consistency

« Generally, cached disk blocks are prioritised in
terms of how critical they are to file system
consistency

— Directory blocks, inode blocks if lost can corrupt the
entire filesystem
« E.g. imagine losing the root directory
« These blocks are usually scheduled for immediate write to
disk
— Data blocks if lost corrupt only the file that they are
associated with

« These block are only scheduled for write back to disk
periodically

 In UNIX, flushd (flush daemon) flushes all modified blocks to
disk every 30 seconds

SErY THE UNIVERSITY OF 66
B NEW SOUTH WALES

File System Consistency

« Alternatively, use a write-through cache
— All modified blocks are written immediately to disk

— Generates much more disk traffic
« Temporary files written back
« Multiple updates not combined

— Used by DOS

» Gave okay consistency when
— Floppies were removed from drives
— Users were constantly resetting (or crashing) their machines

— Still used, e.g. USB storage devices

SErY THE UNIVERSITY OF 67
B NEW SOUTH WALES

