Virtual Memory

SErY THE UNIVERSITY OF
e g NEW SOUTH WALES

Virtual Address

S 15 '

pace |15 Paging
| 13
* Virtual Memory Physical Memory

— Divided into equal- . :
sized pages — Divided into

— A mapping is a equal-sized
translation between frames
* A page and a frame
* A page and null
— Mappings defined at
runtime
« They can change

— Address space can
have holes

— Process does not
have to be
contiguous in
memory

~IO1|O0) (N |00 |©

3

Physical
Address Space 2

O - NWPALOI O

Virtual Address
ace

Sp
Kernel
Stack /
Shared
Libraries

—
e |
F
—

Cod

R THE NIVERSIT

gg | ypical Address

Space Layout

Stack region is at top,
and can grow down

 Heap has free space to
grow up

* Textis typically read-only

« Kernel is in a reserved,
protected, shared region

* 0-th page typically not
used, why?

* A process may 12
be only partially 11
resident

s

What happens if
we access non-
resident
memory?

Virtual Address

Space -

14
13

— Allows OS to
swap individual
pages to disk

— Saves memory

for infrequently
used data & code

Programmer’s perspective:

logically present
System’s perspective: Not
mapped, data on disk

S

14 6

Disk

Physical

Address Space 4

Page Faults

« Referencing an invalid page triggers a page fault
* An exception handled by the OS

« Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
* Get an empty frame
» Load page from disk

» Update page (translation) table (enter frame #, set valid bit, etc.)
» Restart the faulting instruction

* Note: Some implementations store disk block numbers

of non-resident pages in the page table (with valid bit
Unset)

WL THE UNIVERSITY OF
@S NEW SOUTH WALES

Proc 1 Address Proc 2 Address

Space | ! Space
" [15] | 15 P
Currently - ! . 14
running ——___ ! i
13 | 13
(121 Physical 12
' | Address Spage
! 11
! 10 15
| 9 14| [14
' I
|
| (75 15| |1
i 5 Disk
| 4
| 3
2
1
O 6

Virtual Address

Space

14 Page

13 Table

« Page table for 12

resident part of 11

address space

]

s

g
b2
b2

s

s

g
b2

s

=
b2

o

T
ekt

i
L
L

b2

b2
o

ettt
:#a####?

b2
b

£
g
i At
S

8
-
b
ehetetetibebeteeittel

T

—

Physical

O - NWPLLOI O

ddress Space

W

o
i
R
SRS
e
£
& £

Shared Pages

 Private code and data ¢ Shared code

— Each process has own — Single copy of code
copy of code and data shared between all
— Code and data can processes executing it
appear anywhere in — Code must be “pure”
the address space (re-entrant), i.e. not
self modifying

— Code must appear at
same address in all
processes

SErY THE UNIVERSITY OF 3
B NEW SOUTH WALES

Proc 1 Address

Space =
14
2 13
12
11
10
9
8
Two (or more) |-
processes %)
running the 5
1 and sharing
7 the text section
2 Page
- Table

Physical
Address Spade

15

14

13

12

10

Proc 2 Address
Space

Page

Table o

N

Page Table Structure

« Page table is (logically) an array of
frame numbers

— Index by page number
« Each page-table entry (PTE) also has

other bits

Caching

disabled Modified Present/absent
[/ / /

%//% | | | Page frame number

N\

Referenced Protection

Page

N

g==- THE UNIVERSITY OF Table 10

PTE bits

* Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
* Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

* Reference bit
— Indicates the page has been accessed

* Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above

« Caching bit

— Use to indicate processor should bypass the cache when
accessing memory

 Example: to access device registers or memory

=, = Cl THE UNIVERSITY OF 11

Address Translation

* Every (virtual) memory address issued by
the CPU must be translated to physical
memory

— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

SEL THE UNIVERSITY OF 12
B5E NEw SOUTH WALES

Virtual Address

Page #

Offset

Frame # Offset
F 3

Reglster

FPage Table Pir

Page Table

i
o |2

SEEEE, S | Frame #

Paging Mechanism

i N - - O O O O O O O O O O O -
e
| - . . O . O O O O O O R O O O O . O e -

Figure 8.3 Address Translation in a Paging System

Frame

Dﬂset‘ } PﬂgE

O

Main Memory

Page Tables

 Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large

— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

14

Page Tables

* Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— e.g., 0.1 -1 MB text, 0.1 — 10 MB data, 0.1 MB stack

 We need a compact representation that does not waste
space
— But is still very fast to search
 Three basic schemes
— Use data structures that adapt to sparsity

— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

e THE UNIVERSITY OF 1o
el NEW SOUTH WALES

oeCorna-ievel

page tables
Two-level Page 1
T | Page
Table e $00
1, | 4Mof
e 2Md _|avel I memory
page tables liabii) ’
representing 1023 1
unmapped 6** T
pages are not ™o, Ene
3 I
allocated - : Ene
— Null in the ; - =i
top-level
page table };
1,
5 ——
4 o
3 1, To
o 1, Pages
1 >
0 ~—

8L THE UNIVERSITY OF
S NEW SOUTH WALES

Two-level Translation

l

Frame # (Offset

Virtual Address

100 bits | 10 bits | 12 hits

oot gz
table pir

Page
Frame

4-kbyle page
Root page table table (contains
: 0124 PTESs)
(contains 1024 PTEs) 1024 PTEs)

N

Program Paging Mechanism Main Memory

Alternative: Inverted Page Table

Virtual Address
Page # | Offset

Page Table
Page # Entry Chain
—>»
(hash)
f—
Frame #
— »
)
Frame # Offset
Hash Table Inverted Page Table Real Address
IHE UNIVERDITY UK 1o

NEW SOUTH WALES

Alternative: Inverted Page Table

Virtual Address

n hits
Page # | Offset
Control
n bits bits
¥ Process
hash m hits Page # 1)} Chain
function 0
P i
F)
h 4
2"Db1 Frame#l Offset
m hits
Inverted Page Table Real Address

{one entry for each
physical memory frame)

19

Figure 8.6 Inverted Page Table Structure

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's

a frame table).

* Algorithm
— Compute hash of page number
— Use this to index into inverted page table
— Match the page number in the IPT entry
— If match, use the index value as frame # for

translation
— If no match, get next candidate IPT entry from chain

field
— If NULL chain entry = page fault

20

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Properties of IPTs

* IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

« Saves a vast amount of space (especially on 64-bit
systems)

« Used in some IBM and HP workstations

SErY THE UNIVERSITY OF 21
S| NEW SOUTH WALES

VM Implementation Issue

 Problem:

— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
* One to fetch/store the data
—lntolerable performance impact!!

« Solution:
— High-speed cache for page table entries (PTES)

 Called a translation look-aside buffer (TLB)

« Contains recently used page table entries

» Associative, high-speed memory, similar to cache memory
* May be under OS control (unlike memory cache)

e THE UNIVERSITY OF 2
el NEW SOUTH WALES

TLB operation

) Secondary
Main Memory Memory

) ")

Virtual Address

Page # | Offset

Translation
Lookaside Buffer

—
» - .
I'LE hit I
P Oifsel
M o
SE—
Lol
page

Page Table

TLEB miss u/\

>

¥ b
Frame # Offset

Real Address \/\

Pape fault

Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

 If matching PTE found (TLB hit), the address is
translated

* Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
 If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

SErY THE UNIVERSITY OF 26
E%E| NEW SOUTH WALES
-

s

TLB properties

« Page table is (logically) an array of frame
numbers

« TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame #F [V [W

27

TLB properties

« TLB may or may not be under OS control
— Hardware-loaded TLB

* On miss, hardware performs PT lookup and reloads TLB
« Example: Pentium

— Software-loaded TLB

* On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS
* TLB size: typically 64-128 entries

« Can have separate TLBs for instruction fetch
and data access

« TLBs can also be used with inverted page tables
(and others)

g - THE UNIVERSITY OF 28

TLB and context switching
 TLB is a shared piece of hardware
« Page tables are per-process (address space)

* TLB entries are process-specific

— On context switch need to flush the TLB (invalidate
all entries)

* high context-switching overhead (Intel x86)

— or tag entries with address-space ID (ASID)
 called a tagged TLB
 used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect
bits

SErY THE UNIVERSITY OF 29
S| NEW SOUTH WALES

-~

<

TLB effect

« Without TLB

— Average number of physical memory
references per virtual reference
=2

* With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99"1+0.01*2
=1.01

THE UNIVERSITY OF
NEW SOUTH WALES

30

Simplified Components of VM
Virtual Address SySte m Page Tables for 3

Spaces (3 processes rocesses
P (3p) /p Frame Table

J B
Ik |

CPU

TLB

Frame Pool

Physical Memory

T THE UNIVERSITY OF 31
B NEw SOUTH WALES

31

MIPS R3000 TLB

-

i h f
VPN ASID (l
EntryHi Register (TLE key fields)
31 12 11 10 4 g F) [
FEN [\ [\ G 0
Entrylo Register (TLE data fields)
« N = Not cacheable V =valid bit

* D = Dirty = Write protect

* G = Global (ignore ASID
in lookup)

B THE UNIVERSITY OF

%Sl NEW SOUTH WALES

e 64 TLB entries

« Accessed via software through
Cooprocessor 0 registers

— EntryHi and EntryLo

32

R3000 Address
Space Layout

* Kkuseq:
— 2 gigabytes
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)

— user-mode and kernel mode
accessible

— Page size is 4K

L] THE UNIVERSITY OF
258 NEW SOUTH WALES

OXFFFFFFFF

0xC000000

0xA0000000

0x80000000

0x00000000

kuseg

OXFFFFFFFF

R3000 Address
SpaCe LayOUt OxC000000

— Switching processes
switches the translation OxA0000000
(page table) for kuseg

0x80000000

Proc 1 Proc 2 Proc 3
Kuseg Kuseg Kuseg

0x00000000

R3000 Address
Space Layout

» ksegO:
— 512 megabytes

— Fixed translation window to

physical memory

« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
— Cacheable

— Only kernel-mode accessible
— Usually where the kernel code is

placed

WL THE UNIVERSITY OF
| NEW SOUTH WALES

Physical Memory

Oxffffffff

0xC0000000

0xA0000000

0x80000000

0x00000000

kuseg

R3000 Address
Space Layout

kseg1:
— 512 megabytes

— Fixed translation window to
physical memory

« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

* TLB not used
— NOT cacheable
— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)

TN THE UNIVERSITY OF Physical Memory
Bl NEW SOUTH WALES

Oxffffffff

0xC0000000

0xA00000

0x800Q0000

0x00000000

kuseg

R3000 Address
Space Layout

* ksegZ:
— 1024 megabytes
— TLB translated (mapped)
— Cacheable
* Depending on the ‘N’-bit
— Only kernel-mode accessible

— Can be used to store the virtual
linear array page table

T THE UNIVERSITY OF
8 NEW SOUTH WALES

Oxffffffff

0xC0000000

0xA0000000

0x80000000

0x00000000

kuseg

