
1

Virtual Memory

2

• Virtual Memory
– Divided into equal-

sized pages
– A mapping is a

translation between
• A page and a frame
• A page and null

– Mappings defined at
runtime

• They can change
– Address space can

have holes
– Process does not

have to be
contiguous in
memory

• Physical Memory
– Divided into

equal-sized
frames

7
6
5
4
3
2
1
0

15
14
13
12
11
10
9
8

1
12
10

2

3
11

Virtual Address
Space

Physical
Address Space

Paging

0
1
2
3
4
5
6
7

3

Typical Address
Space Layout
• Stack region is at top,

and can grow down
• Heap has free space to

grow up
• Text is typically read-only
• Kernel is in a reserved,

protected, shared region
• 0-th page typically not

used, why?

7
6
5
4
3
2
1
0

15
14
13
12
11
10
9
8

Virtual Address
Space

Kernel

Stack

Shared
Libraries

BSS
(heap)

Data

Text
(Code)

4

• A process may
be only partially
resident
– Allows OS to

swap individual
pages to disk

– Saves memory
for infrequently
used data & code

• What happens if
we access non-
resident
memory?

1
15

5

3
13

Virtual Address
Space

Physical
Address Space

7
6
5

4

3

2

1
0

15
14
13
12
11
10
9
8

14

10

6

4

2

Disk

Programmer’s perspective:
logically present
System’s perspective: Not
mapped, data on disk

5

Page Faults
• Referencing an invalid page triggers a page fault

• An exception handled by the OS

• Broadly, two standard page fault types
– Illegal Address (protection error)

• Signal or kill the process
– Page not resident

• Get an empty frame
• Load page from disk
• Update page (translation) table (enter frame #, set valid bit, etc.)
• Restart the faulting instruction

• Note: Some implementations store disk block numbers
of non-resident pages in the page table (with valid bit
Unset)

6

2
4
13
4
1

3
13

Proc 1 Address
Space

Physical
Address Space

7
6
5

3

1
0

15
14
13
12
11
10
9
8

4

2

7
6
5

3

1
0

15
14
13
12
11
10
9
8

4

2

Proc 2 Address
Space

3

15

15 1
2

14 14

Disk

Currently
running

Memory
Access

2

7

• Page table for
resident part of
address space

1
15
5
4
5
2
3
13

Virtual Address
Space

Physical
Address Space

7
6
5

3

1
0

15
14
13
12
11
10
9
8

4

2

3

1

7

6

0
Page
Table

0
1
2
3
4
5
6
7

8

Shared Pages
• Private code and data

– Each process has own
copy of code and data

– Code and data can
appear anywhere in
the address space

• Shared code
– Single copy of code

shared between all
processes executing it

– Code must be “pure”
(re-entrant), i.e. not
self modifying

– Code must appear at
same address in all
processes

9

2
6
13
4
3
1
3
13

Proc 1 Address
Space

Physical
Address Space

7
6
5

3

1
0

15
14
13
12
11
10
9
8

4

2
2

5

4

7
Page
Table

7
6
5

3

1
0

15
14
13
12
11
10
9
8

4

2
1

2

0

7

Proc 2 Address
Space

Page
Table

Two (or more)
processes
running the

same program
and sharing

the text section

10

Page Table Structure
• Page table is (logically) an array of

frame numbers
– Index by page number

• Each page-table entry (PTE) also has
other bits

2

5

4

7
Page
Table

11

PTE bits
• Present/Absent bit

– Also called valid bit, it indicates a valid mapping for the page
• Modified bit

– Also called dirty bit, it indicates the page may have been
modified in memory

• Reference bit
– Indicates the page has been accessed

• Protection bits
– Read permission, Write permission, Execute permission
– Or combinations of the above

• Caching bit
– Use to indicate processor should bypass the cache when

accessing memory
• Example: to access device registers or memory

12

Address Translation

• Every (virtual) memory address issued by
the CPU must be translated to physical
memory
– Every load and every store instruction
– Every instruction fetch

• Need Translation Hardware
• In paging system, translation involves

replace page number with a frame number

14

Page Tables
• Assume we have

– 32-bit virtual address (4 Gbyte address space)
– 4 KByte page size
– How many page table entries do we need for one

process?
• Problem:

– Page table is very large
– Access has to be fast, lookup for every memory

reference
– Where do we store the page table?

• Registers?
• Main memory?

15

Page Tables
• Page tables are implemented as data structures in main

memory
• Most processes do not use the full 4GB address space

– e.g., 0.1 – 1 MB text, 0.1 – 10 MB data, 0.1 MB stack
• We need a compact representation that does not waste

space
– But is still very fast to search

• Three basic schemes
– Use data structures that adapt to sparsity
– Use data structures which only represent resident pages
– Use VM techniques for page tables (details left to extended OS)

16

Two-level Page
Table

• 2nd –level
page tables
representing
unmapped
pages are not
allocated
– Null in the

top-level
page table

17

Two-level Translation

18

Alternative: Inverted Page Table

19

Alternative: Inverted Page Table

20

Inverted Page Table (IPT)
• “Inverted page table” is an array of page

numbers sorted (indexed) by frame number (it’s
a frame table).

• Algorithm
– Compute hash of page number
– Use this to index into inverted page table
– Match the page number in the IPT entry
– If match, use the index value as frame # for

translation
– If no match, get next candidate IPT entry from chain

field
– If NULL chain entry ⇒ page fault

21

Properties of IPTs
• IPT grows with size of RAM, NOT virtual address space
• Frame table is needed anyway (for page replacement,

more later)
• Need a separate data structure for non-resident pages
• Saves a vast amount of space (especially on 64-bit

systems)
• Used in some IBM and HP workstations

24

• Problem:
– Each virtual memory reference can cause two

physical memory accesses
• One to fetch the page table entry
• One to fetch/store the data
⇒Intolerable performance impact!!

• Solution:
– High-speed cache for page table entries (PTEs)

• Called a translation look-aside buffer (TLB)
• Contains recently used page table entries
• Associative, high-speed memory, similar to cache memory
• May be under OS control (unlike memory cache)

VM Implementation Issue

25

TLB operation

26

Translation Lookaside Buffer
• Given a virtual address, processor examines the

TLB
• If matching PTE found (TLB hit), the address is

translated
• Otherwise (TLB miss), the page number is used

to index the process’s page table
– If PT contains a valid entry, reload TLB and restart
– Otherwise, (page fault) check if page is on disk

• If on disk, swap it in
• Otherwise, allocate a new page or raise an exception

27

TLB properties
• Page table is (logically) an array of frame

numbers
• TLB holds a (recently used) subset of PT entries

– Each TLB entry must be identified (tagged) with the
page # it translates

– Access is by associative lookup:
• All TLB entries’ tags are concurrently compared to the page #
• TLB is associative (or content-addressable) memory

28

TLB properties
• TLB may or may not be under OS control

– Hardware-loaded TLB
• On miss, hardware performs PT lookup and reloads TLB
• Example: Pentium

– Software-loaded TLB
• On miss, hardware generates a TLB miss exception, and

exception handler reloads TLB
• Example: MIPS

• TLB size: typically 64-128 entries
• Can have separate TLBs for instruction fetch

and data access
• TLBs can also be used with inverted page tables

(and others)

29

TLB and context switching
• TLB is a shared piece of hardware
• Page tables are per-process (address space)
• TLB entries are process-specific

– On context switch need to flush the TLB (invalidate
all entries)

• high context-switching overhead (Intel x86)
– or tag entries with address-space ID (ASID)

• called a tagged TLB
• used (in some form) on all modern architectures
• TLB entry: ASID, page #, frame #, valid and write-protect

bits

30

TLB effect

• Without TLB
– Average number of physical memory

references per virtual reference
= 2

• With TLB (assume 99% hit ratio)
– Average number of physical memory

references per virtual reference
= .99 * 1 + 0.01 * 2
= 1.01

31

Simplified Components of VM
System

1 2 3

CPU

Frame Pool

1 3 2

TLB

Virtual Address
Spaces (3 processes)

Page Tables for 3
processes

Frame Table

Physical Memory

TLB Refill

Mechanism

32

MIPS R3000 TLB

• N = Not cacheable
• D = Dirty = Write protect
• G = Global (ignore ASID

in lookup)

• V = valid bit
• 64 TLB entries
• Accessed via software through

Cooprocessor 0 registers
– EntryHi and EntryLo

33

R3000 Address
Space Layout

• kuseg:
– 2 gigabytes
– TLB translated (mapped)
– Cacheable (depending on ‘N’ bit)
– user-mode and kernel mode

accessible
– Page size is 4K

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

34

R3000 Address
Space Layout

– Switching processes
switches the translation
(page table) for kuseg

kseg0

Proc 3
kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

Proc 2
kuseg

Proc 1
kuseg

35

R3000 Address
Space Layout

• kseg0:
– 512 megabytes
– Fixed translation window to

physical memory
• 0x80000000 - 0x9fffffff virtual =

0x00000000 - 0x1fffffff physical
• TLB not used

– Cacheable
– Only kernel-mode accessible
– Usually where the kernel code is

placed

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory

36

R3000 Address
Space Layout

• kseg1:
– 512 megabytes
– Fixed translation window to

physical memory
• 0xa0000000 - 0xbfffffff virtual =

0x00000000 - 0x1fffffff physical
• TLB not used

– NOT cacheable
– Only kernel-mode accessible
– Where devices are accessed (and

boot ROM)

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory

37

R3000 Address
Space Layout

• kseg2:
– 1024 megabytes
– TLB translated (mapped)
– Cacheable

• Depending on the ‘N’-bit
– Only kernel-mode accessible
– Can be used to store the virtual

linear array page table

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

