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Virtual Memory
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• Virtual Memory
– Divided into equal-

sized pages
– A mapping is a 

translation between 
• A page and a frame
• A page and null

– Mappings defined at 
runtime

• They can change
– Address space can 

have holes
– Process does not 

have to be 
contiguous in 
memory

• Physical Memory
– Divided into 

equal-sized 
frames
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Typical Address 
Space Layout
• Stack region is at top, 

and can grow down
• Heap has free space to 

grow up
• Text is typically read-only
• Kernel is in a reserved, 

protected, shared region
• 0-th page typically not 

used, why?
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• A process may 
be only partially 
resident
– Allows OS to 

swap individual 
pages to disk

– Saves memory 
for infrequently 
used data & code

• What happens if 
we access non-
resident 
memory?
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Page Faults
• Referencing an invalid page triggers a page fault

• An exception handled by the OS

• Broadly, two standard page fault types
– Illegal Address (protection error)

• Signal or kill the process
– Page not resident

• Get an empty frame
• Load page from disk
• Update page (translation) table (enter frame #, set valid bit, etc.)
• Restart the faulting instruction

• Note: Some implementations store disk block numbers 
of non-resident pages in the page table (with valid bit 
Unset)
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• Page table for 
resident part of 
address space 
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Shared Pages
• Private code and data

– Each process has own 
copy of code and data

– Code and data can 
appear anywhere in 
the address space

• Shared code
– Single copy of code 

shared between all 
processes executing it

– Code must be “pure”
(re-entrant), i.e. not 
self modifying

– Code must appear at 
same address in all 
processes
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Page Table Structure
• Page table is (logically) an array of 

frame numbers
– Index by page number

• Each page-table entry (PTE) also has 
other bits
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PTE bits
• Present/Absent bit

– Also called valid bit, it indicates a valid mapping for the page
• Modified bit

– Also called dirty bit, it indicates the page may have been 
modified in memory

• Reference bit
– Indicates the page has been accessed

• Protection bits
– Read permission, Write permission, Execute permission
– Or combinations of the above

• Caching bit
– Use to indicate processor should bypass the cache when 

accessing memory
• Example: to access device registers or memory
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Address Translation

• Every (virtual) memory address issued by 
the CPU must be translated to physical 
memory
– Every load and every store instruction
– Every instruction fetch

• Need Translation Hardware
• In paging system, translation involves 

replace page number with a frame number
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Page Tables
• Assume we have

– 32-bit virtual address (4 Gbyte address space)
– 4 KByte page size
– How many page table entries do we need for one 

process?
• Problem:

– Page table is very large
– Access has to be fast, lookup for every memory 

reference
– Where do we store the page table?

• Registers?
• Main memory?



15

Page Tables
• Page tables are implemented as data structures in main 

memory
• Most processes do not use the full 4GB address space

– e.g., 0.1 – 1 MB text, 0.1 – 10 MB data, 0.1 MB stack
• We need a compact representation that does not waste 

space
– But is still very fast to search

• Three basic schemes
– Use data structures that adapt to sparsity
– Use data structures which only represent resident pages
– Use VM techniques for page tables (details left to extended OS)
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Two-level Page 
Table

• 2nd –level 
page tables 
representing 
unmapped 
pages are not 
allocated
– Null in the 

top-level 
page table
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Two-level Translation
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Alternative: Inverted Page Table
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Alternative: Inverted Page Table
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Inverted Page Table (IPT)
• “Inverted page table” is an array of page 

numbers sorted (indexed) by frame number (it’s 
a frame table).

• Algorithm
– Compute hash of page number 
– Use this to index into inverted page table
– Match the page number in the IPT entry
– If match, use the index value as frame # for 

translation
– If no match, get next candidate IPT entry from chain 

field
– If NULL chain entry  ⇒ page fault
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Properties of IPTs
• IPT grows with size of RAM, NOT virtual address space
• Frame table is needed anyway (for page replacement, 

more later)
• Need a separate data structure for non-resident pages
• Saves a vast amount of space (especially on 64-bit 

systems)
• Used in some IBM and HP workstations
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• Problem:
– Each virtual memory reference can cause two 

physical memory accesses
• One to fetch the page table entry
• One to fetch/store the data
⇒Intolerable performance impact!!

• Solution:
– High-speed cache for page table entries (PTEs)

• Called a translation look-aside buffer (TLB)
• Contains recently used page table entries
• Associative, high-speed memory, similar to cache memory
• May be under OS control (unlike memory cache)

VM Implementation Issue
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TLB operation
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Translation Lookaside Buffer
• Given a virtual address, processor examines the 

TLB
• If matching PTE found (TLB hit), the address is 

translated
• Otherwise (TLB miss), the page number is used 

to index the process’s page table
– If PT contains a valid entry, reload TLB and restart
– Otherwise, (page fault) check if page is on disk

• If on disk, swap it in
• Otherwise, allocate a new page or raise an exception
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TLB properties
• Page table is (logically) an array of frame 

numbers
• TLB holds a (recently used) subset of PT entries

– Each TLB entry must be identified (tagged) with the 
page # it translates

– Access is by associative lookup:
• All TLB entries’ tags are concurrently compared to the page #
• TLB is associative (or content-addressable) memory
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TLB properties
• TLB may or may not be under OS control

– Hardware-loaded TLB
• On miss, hardware performs PT lookup and reloads TLB
• Example: Pentium

– Software-loaded TLB
• On miss, hardware generates a TLB miss exception, and 

exception handler reloads TLB
• Example: MIPS

• TLB size: typically 64-128 entries
• Can have separate TLBs for instruction fetch 

and data access
• TLBs can also be used with inverted page tables 

(and others)  
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TLB and context switching
• TLB is a shared piece of hardware
• Page tables are per-process (address space)
• TLB entries are process-specific

– On context switch need to flush the TLB (invalidate 
all entries)

• high context-switching overhead (Intel x86)
– or tag entries with address-space ID (ASID)

• called a tagged TLB
• used (in some form) on all modern architectures
• TLB entry: ASID, page #, frame #, valid and write-protect 

bits
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TLB effect

• Without TLB
– Average number of physical memory 

references per virtual reference 
= 2

• With TLB (assume 99% hit ratio)
– Average number of physical memory 

references per virtual reference
= .99 * 1 + 0.01 * 2
= 1.01 
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Simplified Components of VM 
System

1 2 3

CPU

Frame Pool

1 3 2

TLB

Virtual Address 
Spaces (3 processes)

Page Tables for 3 
processes

Frame Table

Physical Memory

TLB Refill 

Mechanism
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MIPS R3000 TLB

• N = Not cacheable
• D = Dirty = Write protect
• G = Global (ignore ASID 

in lookup)

• V = valid bit
• 64 TLB entries
• Accessed via software through 

Cooprocessor 0 registers
– EntryHi and EntryLo
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R3000 Address 
Space Layout

• kuseg: 
– 2 gigabytes
– TLB translated (mapped)
– Cacheable (depending on ‘N’ bit)
– user-mode and kernel mode 

accessible
– Page size is 4K

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF
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R3000 Address 
Space Layout

– Switching processes 
switches the translation 
(page table) for kuseg

kseg0

Proc 3
kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

Proc 2
kuseg

Proc 1
kuseg
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R3000 Address 
Space Layout

• kseg0: 
– 512 megabytes
– Fixed translation window to 

physical memory
• 0x80000000 - 0x9fffffff virtual = 

0x00000000 - 0x1fffffff physical
• TLB not used

– Cacheable
– Only kernel-mode accessible
– Usually where the kernel code is 

placed

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory
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R3000 Address 
Space Layout

• kseg1: 
– 512 megabytes
– Fixed translation window to 

physical memory
• 0xa0000000 - 0xbfffffff virtual = 

0x00000000 - 0x1fffffff physical
• TLB not used

– NOT cacheable
– Only kernel-mode accessible
– Where devices are accessed (and 

boot ROM)

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory
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R3000 Address 
Space Layout

• kseg2: 
– 1024 megabytes
– TLB translated (mapped)
– Cacheable

• Depending on the ‘N’-bit
– Only kernel-mode accessible
– Can be used to store the virtual 

linear array page table

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff


