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— Divided into equal- . :
sized pages — Divided into

— A mapping is a equal-sized
translation between frames
* A page and a frame
* A page and null
— Mappings defined at
runtime
« They can change
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Stack region is at top,
and can grow down

 Heap has free space to
grow up

* Textis typically read-only

« Kernel is in a reserved,
protected, shared region

* 0-th page typically not
used, why?



* A process may 12
be only partially 11
resident

s

What happens if
we access non-
resident
memory?
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— Allows OS to
swap individual
pages to disk

— Saves memory

for infrequently
used data & code

Programmer’s perspective:

logically present
System’s perspective: Not
mapped, data on disk
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Page Faults

« Referencing an invalid page triggers a page fault
* An exception handled by the OS

« Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
* Get an empty frame
» Load page from disk

» Update page (translation) table (enter frame #, set valid bit, etc.)
» Restart the faulting instruction

* Note: Some implementations store disk block numbers

of non-resident pages in the page table (with valid bit
Unset)
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Shared Pages

 Private code and data ¢ Shared code

— Each process has own — Single copy of code
copy of code and data shared between all
— Code and data can processes executing it
appear anywhere in — Code must be “pure”
the address space (re-entrant), i.e. not
self modifying

— Code must appear at
same address in all
processes
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Page Table Structure

« Page table is (logically) an array of
frame numbers

— Index by page number
« Each page-table entry (PTE) also has

other bits

Caching

disabled Modified Present/absent
[/ / /

%//% | | | Page frame number

N\

Referenced Protection

Page

N
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PTE bits

* Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
* Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

* Reference bit
— Indicates the page has been accessed

* Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above

« Caching bit

— Use to indicate processor should bypass the cache when
accessing memory

 Example: to access device registers or memory

=, = Cl THE UNIVERSITY OF 11




Address Translation

* Every (virtual) memory address issued by
the CPU must be translated to physical
memory

— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number
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Page Tables

 Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large

— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?
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Page Tables

* Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— e.g., 0.1 -1 MB text, 0.1 — 10 MB data, 0.1 MB stack

 We need a compact representation that does not waste
space
— But is still very fast to search
 Three basic schemes
— Use data structures that adapt to sparsity

— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)
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Two-level Translation
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Alternative: Inverted Page Table

Virtual Address
Page # | Offset

Page Table
Page # Entry Chain
—>»
(hash)
f—
Frame #
— »
)
Frame # Offset
Hash Table Inverted Page Table Real Address
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Alternative: Inverted Page Table

Virtual Address

n hits
Page # | Offset
Control
n bits bits
¥ Process
hash m hits Page # 1)} Chain
function 0
P i
F)
h 4
2"Db1 Frame#l Offset
m hits
Inverted Page Table Real Address

{one entry for each
physical memory frame)
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Figure 8.6 Inverted Page Table Structure



Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's

a frame table).

* Algorithm
— Compute hash of page number
— Use this to index into inverted page table
— Match the page number in the IPT entry
— If match, use the index value as frame # for

translation
— If no match, get next candidate IPT entry from chain

field
— If NULL chain entry = page fault

20
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Properties of IPTs

* IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

« Saves a vast amount of space (especially on 64-bit
systems)

« Used in some IBM and HP workstations
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VM Implementation Issue

 Problem:

— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
* One to fetch/store the data
—lntolerable performance impact!!

« Solution:
— High-speed cache for page table entries (PTES)

 Called a translation look-aside buffer (TLB)

« Contains recently used page table entries

» Associative, high-speed memory, similar to cache memory
* May be under OS control (unlike memory cache)
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TLB operation
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Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

 If matching PTE found (TLB hit), the address is
translated

* Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
 If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

SErY THE UNIVERSITY OF 26
E%E| NEW SOUTH WALES
-

s




TLB properties

« Page table is (logically) an array of frame
numbers

« TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame #F [V [ W
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TLB properties

« TLB may or may not be under OS control
— Hardware-loaded TLB

* On miss, hardware performs PT lookup and reloads TLB
« Example: Pentium

— Software-loaded TLB

* On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS
* TLB size: typically 64-128 entries

« Can have separate TLBs for instruction fetch
and data access

« TLBs can also be used with inverted page tables
(and others)
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TLB and context switching
 TLB is a shared piece of hardware
« Page tables are per-process (address space)

* TLB entries are process-specific

— On context switch need to flush the TLB (invalidate
all entries)

* high context-switching overhead (Intel x86)

— or tag entries with address-space ID (ASID)
 called a tagged TLB
 used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect
bits
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TLB effect

« Without TLB

— Average number of physical memory
references per virtual reference
=2

* With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99"1+0.01*2
=1.01
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Simplified Components of VM
Virtual Address SySte m Page Tables for 3

Spaces (3 processes rocesses
P (3p ) /p Frame Table

J B
Ik |

CPU

TLB

Frame Pool

Physical Memory
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MIPS R3000 TLB

-

i h f
VPN ASID (l
EntryHi Register (TLE key fields)
31 12 11 10 4 g F) [
FEN [\ [ \ G 0
Entrylo Register (TLE data fields)
« N = Not cacheable  V =valid bit

* D = Dirty = Write protect

* G = Global (ignore ASID
in lookup)
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e 64 TLB entries

« Accessed via software through
Cooprocessor 0 registers

— EntryHi and EntryLo
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R3000 Address
Space Layout

* Kkuseq:
— 2 gigabytes
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)

— user-mode and kernel mode
accessible

— Page size is 4K
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OXFFFFFFFF

R3000 Address
SpaCe LayOUt OxC000000

— Switching processes
switches the translation OxA0000000
(page table) for kuseg

0x80000000

Proc 1 Proc 2 Proc 3
Kuseg Kuseg Kuseg

0x00000000




R3000 Address
Space Layout

» ksegO:
— 512 megabytes

— Fixed translation window to

physical memory

« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
— Cacheable

— Only kernel-mode accessible
— Usually where the kernel code is

placed

WL THE UNIVERSITY OF
| NEW SOUTH WALES

Physical Memory

Oxffffffff

0xC0000000

0xA0000000

0x80000000

0x00000000
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R3000 Address
Space Layout

kseg1:
— 512 megabytes

— Fixed translation window to
physical memory

« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

* TLB not used
— NOT cacheable
— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)
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R3000 Address
Space Layout

* ksegZ:
— 1024 megabytes
— TLB translated (mapped)
— Cacheable
* Depending on the ‘N’-bit
— Only kernel-mode accessible

— Can be used to store the virtual
linear array page table
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