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Synchronisation and 
Concurrency II
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Summarising Semaphores

• Semaphores can be used to solve a 
variety of concurrency problems

• However, programming with then can be 
error-prone
– E.g. must signal for every wait for mutexes

• Too many, or too few signals or waits, or signals 
and waits in the wrong order, can have 
catastrophic results
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Monitors
• To ease concurrent programming, Hoare (1974) 

proposed monitors.
– A higher level synchronisation primitive
– Programming language construct

• Idea
– A set of procedures, variables, data types are 

grouped in a special kind of module, a monitor.
• Variables and data types only accessed from within the 

monitor
– Only one process/thread can be in the monitor at any 

one time
• Mutual exclusion is implemented by the compiler (which 

should be less error prone) 
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Monitor

• When a thread 
calls a monitor 
procedure that 
has a thread 
already inside, it 
is queued and it 
sleeps until the 
current thread 
exits the monitor.
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Monitors

Example of a monitor
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Simple example
monitor counter {

int count;
procedure inc() {

count = count + 1;
}
procedure dec() {

count = count –1;
}

}

Note:  “paper” language
• Compiler guarantees 

only one thread can 
be active in the 
monitor at any one 
time

• Easy to see this 
provides mutual 
exclusion
– No race condition on 
count. 
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How do we block waiting for an 
event?

• We need a mechanism to block waiting for 
an event (in addition to ensuring mutual 
exclusion)
– e.g., for producer consumer problem when 

buffer is empty or full
• Condition Variables
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Condition Variable
• To allow a process to wait within the monitor, a condition

variable must be declared, as
condition x, y;

• Condition variable can only be used with the operations 
wait and signal.
– The operation

x.wait();
means that the process invoking this operation is suspended until 
another process invokes

x.signal();
– The x.signal operation resumes exactly one suspended process.  If 

no process is suspended, then the signal operation has no effect.
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Condition Variables
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Monitors

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time
– buffer has N slots
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OS/161 Provided Synchronisation
Primitives

• Locks
• Semaphores
• Condition Variables
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Locks
• Functions to create and destroy locks

struct lock *lock_create(const char *name);
void         lock_destroy(struct lock *);

• Functions to acquire and release them

void         lock_acquire(struct lock *);
void         lock_release(struct lock *);
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Example use of locks
int count;
struct lock *count_lock

main() {
count = 0;
count_lock = 

lock_create(“count
lock”);
if (count_lock == NULL)

panic(“I’m dead”);
stuff();

}

procedure inc() {
lock_acquire(count_lock);
count = count + 1;
lock_release(count_lock);

}
procedure dec() {

lock_acquire(count_lock);
count = count –1;
lock_release(count_lock);

}



14

Semaphores

struct semaphore *sem_create(const char *name, int
initial_count);

void              sem_destroy(struct semaphore *);

void              P(struct semaphore *);
void              V(struct semaphore *);
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Example use of Semaphores
int count;
struct semaphore 

*count_mutex;

main() {
count = 0;
count_mutex = 

sem_create(“count”, 
1);

if (count_mutex == NULL)
panic(“I’m dead”);

stuff();
}

procedure inc() {
P(count_mutex);
count = count + 1;
V(count_mutex);

}
procedure dec() {

P(count_mutex);
count = count –1;
V(count_mutex);

}
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Condition Variables
struct cv *cv_create(const char *name);
void       cv_destroy(struct cv *);

void       cv_wait(struct cv *cv, struct lock *lock);

– Releases the lock and blocks
– Upon resumption, it re-acquires the lock

• Note: we must recheck the condition we slept on

void       cv_signal(struct cv *cv, struct lock *lock);
void       cv_broadcast(struct cv *cv, struct lock *lock);

– Wakes one/all, does not release the lock
– First “waiter” scheduled after signaller releases the lock will re-

acquire the lock 

Note: All three variants must hold the lock passed in.
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Condition Variables and Bounded 
Buffers

Non-solution
lock_acquire(c_lock) 
if (count == 0) 

sleep();
remove_item();
count--;
lock_release(c_lock);

Solution
lock_acquire(c_lock) 
while (count == 0) 

cv_wait(c_cv, c_lock);
remove_item();
count--;
lock_release(c_lock);
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A Producer-Consumer Solution 
Using OS/161 CVs

int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
lock_aquire(l) 
while (count == N)

cv_wait(f,l);
insert_item(item);
count++;
if (count == 1)

cv_signal(e,l);
lock_release()

}
}

con() {
while(TRUE) {

lock_acquire(l)
while (count == 0) 

cv_wait(e,l);
item = remove_item();
count--;
if (count == N-1)

cv_signal(f,l);
lock_release(l);
consume(item); 

}
}
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Interprocess Communication
• Shared Memory

– Region of memory 
appears in each 
process

– Communication via 
modifications to 
shared region

– Requires concurrency 
control (semaphores, 
mutexes, monitors…

Shared
data

Process 1 Process 2
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Interprocess Communication
• Shared files

– Cumbersome

File

Process 1 Process 2
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Interprocess Communication
• Message Passing

– “real” IPC

• Requires two facilities
– send(message)

• Message may be fixed or 
variable in size

– receive(message)

• OS ships the data from 
the sender to the receiver

data

Process 1 Process 2
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Interprocess Communication 
(IPC)

• Mechanism for processes to communicate and 
to synchronize their actions.

• Message system – processes communicate with 
each other without resorting to shared variables.

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive



23

IPC design issues
• Is the communication synchronous or asynchronous?
• How are links established?
• Can a link be associated with more than two processes?
• How many links can there be between every pair of 

communicating processes?
• What is the capacity of a link?
• Is the size of a message that the link can accommodate 

fixed or variable?
• Is the message format fixed or variable?
• Is a link unidirectional or bi-directional?
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Blocking      vs.     Non-blocking
• Send

– Operation blocks until 
partner is ready to 
receive

• Rendezvous model
• Send and receiver 

execute their system at 
the same time 
(synchronously)

• Receive
– Operation blocks until 

message is available
• synchronous

• Send
– Kernel receives 

message and delivers 
when receiver is ready

• Asynchronous

• Receive
– System call returns 

immediately if no 
message is available

• Asynchronous (polling) 
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Blocking vs. Non-blocking
• Non-blocking IPC

– Requires buffering of messages in the kernel
• May fail due to buffer full
• Overhead (copying, allocation)

– Higher level of concurrency
– Requires a separate synchronisation primitive

• Blocking IPC
– May lead to threads blocked indefinitely

• Can use timeouts prevent this
• Zero-timeout ⇒ non-blocking receive
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Direct Communication
• Processes (or threads) must name each other explicitly 

using their unique process (or thread) ID:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from process Q

• Properties of communication link
– Links are established automatically (implicitly).
– A link is associated with exactly one pair of communicating 

processes.
– Between each pair there exists exactly one link.
– The link may be unidirectional, but is usually bi-directional.
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Indirect Communication
• Messages are directed to and received from 

mailboxes (also referred to as ports).
– Each mailbox has a unique id.
– Processes can communicate only if they share a mailbox.
– E.g. Mach

• Properties of communication link
– Link established only if processes share a common mailbox

• OS mechanism required to establish mailbox sharing
– A link may be associated with many processes.
– Each pair of processes may share several communication 

links.
– Link may be unidirectional or bi-directional.
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Indirect Communication
• Operations

– create a new mailbox
– send and receive messages through mailbox
– destroy a mailbox

• Primitives are defined as:
send(A, message) – send a message to 
mailbox A
receive(A, message) – receive a 
message from mailbox A
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Indirect Communication
• Mailbox sharing

– P1, P2, and P3 share mailbox A.
– P1, sends; P2 and P3 receive.
– Who gets the message?

• Solutions
– Allow a link to be associated with at most two 

processes.
– Allow only one process at a time to execute a receive 

operation (Mach).
– Allow the system to select arbitrarily the receiver.  
– First come, first served.
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Message Passing

The producer-consumer problem with N messages
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Dining Philosophers

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time 
• How to prevent deadlock 
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Dining Philosophers

A nonsolution to the dining philosophers problem
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Dining Philosophers

Solution to dining philosophers problem (part 1)
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Dining Philosophers

Solution to dining philosophers problem (part 2)
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The Readers and Writers Problem

• Models access to a database
• E.g. airline reservation system

– Can have more than one concurrent reader
• To check schedules and reservations

– Writers must have exclusive access
• To book a ticket or update a schedule
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The Readers and Writers Problem

A solution to the readers and writers problem
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The Sleeping Barber Problem 
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The Sleeping Barber Problem 

Solution to sleeping barber problem.

See the textbook


