
1

Synchronisation and
Concurrency II

2

Summarising Semaphores

• Semaphores can be used to solve a
variety of concurrency problems

• However, programming with then can be
error-prone
– E.g. must signal for every wait for mutexes

• Too many, or too few signals or waits, or signals
and waits in the wrong order, can have
catastrophic results

3

Monitors
• To ease concurrent programming, Hoare (1974)

proposed monitors.
– A higher level synchronisation primitive
– Programming language construct

• Idea
– A set of procedures, variables, data types are

grouped in a special kind of module, a monitor.
• Variables and data types only accessed from within the

monitor
– Only one process/thread can be in the monitor at any

one time
• Mutual exclusion is implemented by the compiler (which

should be less error prone)

4

Monitor

• When a thread
calls a monitor
procedure that
has a thread
already inside, it
is queued and it
sleeps until the
current thread
exits the monitor.

5

Monitors

Example of a monitor

6

Simple example
monitor counter {

int count;
procedure inc() {

count = count + 1;
}
procedure dec() {

count = count –1;
}

}

Note: “paper” language
• Compiler guarantees

only one thread can
be active in the
monitor at any one
time

• Easy to see this
provides mutual
exclusion
– No race condition on
count.

7

How do we block waiting for an
event?

• We need a mechanism to block waiting for
an event (in addition to ensuring mutual
exclusion)
– e.g., for producer consumer problem when

buffer is empty or full
• Condition Variables

8

Condition Variable
• To allow a process to wait within the monitor, a condition

variable must be declared, as
condition x, y;

• Condition variable can only be used with the operations
wait and signal.
– The operation

x.wait();
means that the process invoking this operation is suspended until
another process invokes

x.signal();
– The x.signal operation resumes exactly one suspended process. If

no process is suspended, then the signal operation has no effect.

9

Condition Variables

10

Monitors

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time
– buffer has N slots

11

OS/161 Provided Synchronisation
Primitives

• Locks
• Semaphores
• Condition Variables

12

Locks
• Functions to create and destroy locks

struct lock *lock_create(const char *name);
void lock_destroy(struct lock *);

• Functions to acquire and release them

void lock_acquire(struct lock *);
void lock_release(struct lock *);

13

Example use of locks
int count;
struct lock *count_lock

main() {
count = 0;
count_lock =

lock_create(“count
lock”);
if (count_lock == NULL)

panic(“I’m dead”);
stuff();

}

procedure inc() {
lock_acquire(count_lock);
count = count + 1;
lock_release(count_lock);

}
procedure dec() {

lock_acquire(count_lock);
count = count –1;
lock_release(count_lock);

}

14

Semaphores

struct semaphore *sem_create(const char *name, int
initial_count);

void sem_destroy(struct semaphore *);

void P(struct semaphore *);
void V(struct semaphore *);

15

Example use of Semaphores
int count;
struct semaphore

*count_mutex;

main() {
count = 0;
count_mutex =

sem_create(“count”,
1);

if (count_mutex == NULL)
panic(“I’m dead”);

stuff();
}

procedure inc() {
P(count_mutex);
count = count + 1;
V(count_mutex);

}
procedure dec() {

P(count_mutex);
count = count –1;
V(count_mutex);

}

16

Condition Variables
struct cv *cv_create(const char *name);
void cv_destroy(struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);

– Releases the lock and blocks
– Upon resumption, it re-acquires the lock

• Note: we must recheck the condition we slept on

void cv_signal(struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);

– Wakes one/all, does not release the lock
– First “waiter” scheduled after signaller releases the lock will re-

acquire the lock

Note: All three variants must hold the lock passed in.

17

Condition Variables and Bounded
Buffers

Non-solution
lock_acquire(c_lock)
if (count == 0)

sleep();
remove_item();
count--;
lock_release(c_lock);

Solution
lock_acquire(c_lock)
while (count == 0)

cv_wait(c_cv, c_lock);
remove_item();
count--;
lock_release(c_lock);

18

A Producer-Consumer Solution
Using OS/161 CVs

int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
lock_aquire(l)
while (count == N)

cv_wait(f,l);
insert_item(item);
count++;
if (count == 1)

cv_signal(e,l);
lock_release()

}
}

con() {
while(TRUE) {

lock_acquire(l)
while (count == 0)

cv_wait(e,l);
item = remove_item();
count--;
if (count == N-1)

cv_signal(f,l);
lock_release(l);
consume(item);

}
}

19

Interprocess Communication
• Shared Memory

– Region of memory
appears in each
process

– Communication via
modifications to
shared region

– Requires concurrency
control (semaphores,
mutexes, monitors…

Shared
data

Process 1 Process 2

20

Interprocess Communication
• Shared files

– Cumbersome

File

Process 1 Process 2

21

Interprocess Communication
• Message Passing

– “real” IPC

• Requires two facilities
– send(message)

• Message may be fixed or
variable in size

– receive(message)

• OS ships the data from
the sender to the receiver

data

Process 1 Process 2

22

Interprocess Communication
(IPC)

• Mechanism for processes to communicate and
to synchronize their actions.

• Message system – processes communicate with
each other without resorting to shared variables.

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

23

IPC design issues
• Is the communication synchronous or asynchronous?
• How are links established?
• Can a link be associated with more than two processes?
• How many links can there be between every pair of

communicating processes?
• What is the capacity of a link?
• Is the size of a message that the link can accommodate

fixed or variable?
• Is the message format fixed or variable?
• Is a link unidirectional or bi-directional?

24

Blocking vs. Non-blocking
• Send

– Operation blocks until
partner is ready to
receive

• Rendezvous model
• Send and receiver

execute their system at
the same time
(synchronously)

• Receive
– Operation blocks until

message is available
• synchronous

• Send
– Kernel receives

message and delivers
when receiver is ready

• Asynchronous

• Receive
– System call returns

immediately if no
message is available

• Asynchronous (polling)

25

Blocking vs. Non-blocking
• Non-blocking IPC

– Requires buffering of messages in the kernel
• May fail due to buffer full
• Overhead (copying, allocation)

– Higher level of concurrency
– Requires a separate synchronisation primitive

• Blocking IPC
– May lead to threads blocked indefinitely

• Can use timeouts prevent this
• Zero-timeout ⇒ non-blocking receive

26

Direct Communication
• Processes (or threads) must name each other explicitly

using their unique process (or thread) ID:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from process Q

• Properties of communication link
– Links are established automatically (implicitly).
– A link is associated with exactly one pair of communicating

processes.
– Between each pair there exists exactly one link.
– The link may be unidirectional, but is usually bi-directional.

27

Indirect Communication
• Messages are directed to and received from

mailboxes (also referred to as ports).
– Each mailbox has a unique id.
– Processes can communicate only if they share a mailbox.
– E.g. Mach

• Properties of communication link
– Link established only if processes share a common mailbox

• OS mechanism required to establish mailbox sharing
– A link may be associated with many processes.
– Each pair of processes may share several communication

links.
– Link may be unidirectional or bi-directional.

28

Indirect Communication
• Operations

– create a new mailbox
– send and receive messages through mailbox
– destroy a mailbox

• Primitives are defined as:
send(A, message) – send a message to
mailbox A
receive(A, message) – receive a
message from mailbox A

29

Indirect Communication
• Mailbox sharing

– P1, P2, and P3 share mailbox A.
– P1, sends; P2 and P3 receive.
– Who gets the message?

• Solutions
– Allow a link to be associated with at most two

processes.
– Allow only one process at a time to execute a receive

operation (Mach).
– Allow the system to select arbitrarily the receiver.
– First come, first served.

30

Message Passing

The producer-consumer problem with N messages

31

Dining Philosophers

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time
• How to prevent deadlock

32

Dining Philosophers

A nonsolution to the dining philosophers problem

33

Dining Philosophers

Solution to dining philosophers problem (part 1)

34

Dining Philosophers

Solution to dining philosophers problem (part 2)

35

The Readers and Writers Problem

• Models access to a database
• E.g. airline reservation system

– Can have more than one concurrent reader
• To check schedules and reservations

– Writers must have exclusive access
• To book a ticket or update a schedule

36

The Readers and Writers Problem

A solution to the readers and writers problem

37

The Sleeping Barber Problem

38

The Sleeping Barber Problem

Solution to sleeping barber problem.

See the textbook

