Synchronisation and
Concurrency I

TSR] THE UNIVERSITY OF
‘g NEW SOUTH WALES

Summarising Semaphores

 Semaphores can be used to solve a
variety of concurrency problems

 However, programming with then can be
error-prone

— E.g. must signal for every wait for mutexes

* Too many, or too few signals or waits, or signals
and waits in the wrong order, can have
catastrophic results

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Monitors

« To ease concurrent programming, Hoare (1974)
proposed monitors.

— A higher level synchronisation primitive
— Programming language construct

 |dea

— A set of procedures, variables, data types are
grouped in a special kind of module, a monitor.
« Variables and data types only accessed from within the
monitor
— Only one process/thread can be in the monitor at any
one time

« Mutual exclusion is implemented by the compiler (which
should be less error prone)

Monitor

entry queue

 When a thread
calls a monitor
procedure that
has a thread
already inside, it
IS queued and it
sleeps until the
current thread
exits the monitor.

shared data

- ..

Y

operations

initialization
code

Monitors

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor;

Example of a monitor

8L THE UNIVERSITY U,
S NEW SOUTH WALES

Simple example

monitor counter { Note: “paper” |anguage

int count; o Comp”er guaranteeS
only one thread can
be active in the
monitor at any one

count = count -1; time
} « Easy to see this
} provides mutual
exclusion

— No race condition on
count.

procedure inc() {

count = count + 1;

}

procedure dec() {

SErY THE UNIVERSITY OF 5
B NEW SOUTH WALES

How do we block waiting for an

event?

* We need a mechanism to block waiting for

an event (in addition to ensuring mutual
exclusion)

— e.g., for producer consumer problem when
buffer is empty or full

 Condition Variables

SErY THE UNIVERSITY OF 7
il NEW SOUTH WALES

Condition Variable

« To allow a process to wait within the monitor, a condition
variable must be declared, as

condition x, y;

« Condition variable can only be used with the operations
wait and signal.
— The operation

x.wait();
means that the process invoking this operation is suspended until
another process invokes

x.signal();

— The x.signal operation resumes exactly one suspended process. If
no process is suspended, then the signal operation has no effect.

e THE UNIVERSITY OF °
el NEW SOUTH WALES

Condition Variables

shared data

queues associated with {
X, y conditions

hd

operations

initialization
code

] THE UNIVERSITY OF
2| NEW SOUTH WALES

NP

Monitors

monitor ProducerConsumer

.o rocedure producer;
condition full, empty; gegin p
MLCRE COurs; while frue do
procedure insert(item: integer); begin

begin
if count = N then wait(full);
insert_item(item),

item = produce_item;
ProducerConsumer.insert(item)

end
count := count + 1; _
2 . end;
if count = 1 then signal(empty) ,
procedure consumer:;
end; .
. ’ begin
function remove: integer, .
“ while frue do
begin .
if count = 0 then wait(empty); begin
. pLY; item = ProducerConsumer.remove,
remove = remove _item, . .
consume _item(item)
count := count — 1; el
if count = N — 1 then signal(full) e
end; |
count ;= 0;

end monitor:;

* Qutline of producer-consumer problem with monitors

— only one monitor procedure active at one time
— buffer has N slots

0S/161 Provided Synchronisation
Primitives
* Locks

 Semaphores
« Condition Variables

B THE UNIVERSITY OF)
@S NEW SOUTH WALES

Locks

 Functions to create and destroy locks

struct lock *lock create(const char *name) ;
void lock destroy(struct lock *);

* Functions to acquire and release them

void lock acquire(struct lock *);
void lock release(struct lock ¥*);

B THE UNIVERSITY OF

8 NEW SOUTH WALES

12

Example use of locks

int count;

struct lock *count lock

main() {
count = 0;
count_lock =

lock create(“count
lock”) ;

if (count lock == NULL)
panic (“I'm dead”);
stuff () ;

WL THE UNIVERSITY OF
@S NEW SOUTH WALES

procedure inc() {
lock acquire (count lock);
count = count + 1;
lock release(count lock);
}
procedure dec() {
lock _acquire (count lock);
count = count -1;

lock _release(count lock);

13

B! THE UNIVERSITY OF

Semaphores

struct semaphore *sem create(const char *name, int
initial count);

void sem destroy(struct semaphore *);
void P(struct semaphore *);
void V(struct semaphore *);

14
NEW SOUTH WALES

Example use of Semaphores

int count;

struct semaphore
*count mutex;

main() {
count = 0;
count;mutex =

sem create (“count”,
1);

if (count mutex == NULL)
panic (“I'm dead”) ;
stuff () ;

WL THE UNIVERSITY OF
@S NEW SOUTH WALES

procedure inc() {
P (count mutex);
count = count + 1;
V(count mutex) ;

}

procedure dec() {
P (count mutex) ;
count = count -1;

V(count mutex) ;

15

Condition Variables

struct cv *cv_create(const char *name) ;
void cv_destroy(struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);
— Releases the lock and blocks

— Upon resumption, it re-acquires the lock
* Note: we must recheck the condition we slept on

void cv_signal(struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);

— Wakes one/all, does not release the lock

— First “waiter” scheduled after signaller releases the lock will re-
acquire the lock

Note: All three variants must hold the lock passed in.

L] THE UNIVERSITY OF *

Q NEW SOUTH WALES

Condition Variables and Bounded
Buffers

Non-solution

lock acquire(c_lock)

if (count == 0)
sleep() ;

remove item() ;

count—--;

lock release(c_lock);

Solution

lock acquire(c_lock)

while (count == 0)
cv_wait(c_cv, c _lock);

remove item() ;

count--;

lock release(c lock);

17

A Producer-Consumer Solution
Using OS/161 CVs

= 0,
#define N 4 /* buf size */
prod() { con() {
while (TRUE) ({ while (TRUE) ({
item = produce () lock acquire(1l)
lock_aquire (1) while (count == 0)

while (count == N) cv_wait(e,l);
cv_wait(f,1); item = remove item() ;

insert item(item); count--;

count++; if (count == N-1)

if (count == 1)
cv_signal(e,l);

lock _release()

WL THE UNIVERSITY OF
@S NEW SOUTH WALES

cv_signal(f,1);
lock release(l);
consume (item) ;

18

Interprocess Communication

« Shared Memory Process 1 Process 2

— Region of memory
appears in each
process

— Communication via
modifications to
shared region

— Requires concurrency
control (semaphores,
mutexes, monitors...

B THE UNIVERSITY OF h
B NEW SOUTH WALES

Interprocess Communication

« Shared files Process 1 Process 2

— Cumbersome

TSR] THE UNIVERSITY OF - 20
B - Q NEW SOUTH WALES

|

Interprocess Communication

+ Message Passing Process 1 Process 2
— “real” |IPC

* Requires two facilities
— send(message)
« Message may be fixed or -

variable in size

— receive(message)
* OS ships the data from
the sender to the receiver U

r' THE UNIVERSITY OF o

Interprocess Communication
(IPC)

 Mechanism for processes to communicate and
to synchronize their actions.

 Message system — processes communicate with
each other without resorting to shared variables.
« If P and Q wish to communicate, they need to:

— establish a communication link between them
— exchange messages via send/receive

SErY THE UNIVERSITY OF 22
S| NEW SOUTH WALES

IPC design issues

* Is the communication synchronous or asynchronous?
 How are links established?
* Can a link be associated with more than two processes?

 How many links can there be between every pair of
communicating processes?

« What is the capacity of a link?

 Is the size of a message that the link can accommodate
fixed or variable?

 |s the message format fixed or variable?
 |s a link unidirectional or bi-directional?

SErY THE UNIVERSITY OF 23
S| NEW SOUTH WALES

Blocking

e Send

— Operation blocks until
partner is ready to
receive

 Rendezvous model

« Send and receiver
execute their system at
the same time
(synchronously)

e Recelve

— Operation blocks until
message is available
« synchronous

e THE UNIVERSITY OF
W NEW SOUTH WALES

VS.

Non-blocking

e Send

— Kernel receives
message and delivers
when receiver is ready

* Asynchronous

e Recelve

— System call returns
immediately if no
message is available

« Asynchronous (polling)

24

Blocking vs. Non-blocking

* Non-blocking IPC

— Requires buffering of messages in the kernel
« May fail due to buffer full
» Overhead (copying, allocation)

— Higher level of concurrency
— Requires a separate synchronisation primitive

 Blocking IPC

— May lead to threads blocked indefinitely
« Can use fimeouts prevent this
» Zero-timeout = non-blocking receive

SErY THE UNIVERSITY OF o5
S| NEW SOUTH WALES

Direct Communication

* Processes (or threads) must name each other explicitly
using their unique process (or thread) ID:
— send (P, message) — send a message to process P
— receive(Q, message) — receive a message from process Q

* Properties of communication link
— Links are established automatically (implicitly).

— Alink is associated with exactly one pair of communicating
processes.

— Between each pair there exists exactly one link.
— The link may be unidirectional, but is usually bi-directional.

e THE UNIVERSITY OF 20
el NEW SOUTH WALES

Indirect Communication

 Messages are directed to and received from
mailboxes (also referred to as ports).
— Each mailbox has a unique id.

— Processes can communicate only if they share a mailbox.
— E.g. Mach

* Properties of communication link

— Link established only if processes share a common mailbox
* OS mechanism required to establish mailbox sharing
— A link may be associated with many processes.

— Each pair of processes may share several communication
links.

— Link may be unidirectional or bi-directional.

L] THE UNIVERSITY OF °!
G NEW SOUTH WALES

Indirect Communication

* Operations
— create a new mailbox
— send and receive messages through mailbox
— destroy a mailbox

 Primitives are defined as:

send(A, message) — send a message to
mailbox A

receive(A, message) — receive a
message from mailbox A

SErY THE UNIVERSITY OF o8
S| NEW SOUTH WALES

Indirect Communication

« Mailbox sharing
— P,, P,, and P, share mailbox A.
— P,, sends; P, and P; receive.
— Who gets the message?

e Solutions

— Allow a link to be associated with at most two
processes.

— Allow only one process at a time to execute a receive
operation (Mach).

— Allow the system to select arbitrarily the receiver.
— First come, first served.

SErY THE UNIVERSITY OF 29
S| NEW SOUTH WALES

Message Passing

#define N 100 /* number of slots in the buffer */

void producer(void)

{
int item;
message m; /* message buffer */

while (TRUE) {

item = produce_item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build_message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */

}

void consumer(void)

{
int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract_item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume _item(item); /* do something with the item */

__The producer-consumer problem with N messages

NEW SOUTH WALES

Dining Philosophers

* Philosophers eat/think
Eating needs 2 forks
Pick one fork at a time
How to prevent deadlock

L] THE UNIVERSITY OF .
G NEW SOUTH WALES

Dining Philosophers

#define N 5 /* number of philosophers */

void philosopher(int i) /* 1. philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take _fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

A nonsolution to the dining philosophers problem

e THE UNIVERSITY OF %
el NEW SOUTH WALES

Dlnlng Philosophers

#define N
#define LEFT (|+N 1)%N
#define RIGHT (i+1)%N

#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state[N];
semaphore mutex = 1;
semaphore s[N];

void philosopher(int i)
{
while (TRUE) {
think();
take _forks(i);
eat();
put_forks(i);

}

/* number of philosophers */

/* number of i's left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i. philosopher number, from 0 to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */

ﬁ—- Solution to dining philosophers problem (part 1)

0 —

Dining Philosophers

void take_ forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sJi]); /* block if forks were not acquired */
}
void put_ forks(i) /* 1. philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from 0 to N-1 */

{
if (state[i] == HUNGRY && state[LEFT] = EATING && state[RIGHT] != EATING) {

state[i] = EATING;
up(&sfi]);

}

Solution to dining philosophers problem (part 2)

The Readers and Writers Problem

* Models access to a database
» E.g. airline reservation system

— Can have more than one concurrent reader
* To check schedules and reservations

— Writers must have exclusive access
* To book a ticket or update a schedule

SErY THE UNIVERSITY OF 35
S| NEW SOUTH WALES

The Readers and Writers Problem

typedef int semaphore; /* use your imagination */

semaphore mutex = 1; /* controls access to 'rc’ */

semaphore db = 1; /* controls access to the database */
intrc =0; /* # of processes reading or wanting to */

void reader(void)

{

while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc+1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to 'rc’ */
read_data_base(); /* access the data */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc-1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to 'rc’ */
use_data_read(); /* noncritical region */

void writer(void)

{

while (TRUE) { /* repeat forever */
think_up_data(); /* noncritical region */
down(&db); /* get exclusive access */
write _data_base(); /* update the data */
up(&db); /* release exclusive access */

A solution to the readers and writers problem

The Sleeping Barber Problem

37

The Sleeping Barber Problem

#define CHAIRS 5 /* # chairs for waiting customers */
typedef int semaphore; /* use your imagination */
semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */
void barber(void)
while (TRUE) {
down(&customers); /* go to sleep if # of customers is 0 */
down(&mutex); /* acquire access to 'waiting’ */
waiting = waiting — 1; /* decrement count of waiting customers */
up(&barbers); /* one barber is now ready to cut hair */
up(&mutex); /* release 'waiting’ */

* i i *

}
1
void cu
{
do :
if (waiting < CHAIRS) { /* if there are no free chairs, leave */
waiting = waiting + 1; /* increment count of waiting customers */
up(&customers); /* wake up barber if necessary */
up(&mutex); /* release access to ‘waiting’ */
down(&barbers); /* go to sleep if # of free barbers is 0 */
get_haircut(); /* be seated and be serviced */
} else {
up(&mutex); /* shop is full; do not wait */

B T wALEs Solution to sleeping barber problem. 38

