Processes and Threads

TSR] THE UNIVERSITY OF
‘g NEW SOUTH WALES

Major Requirements of an
Operating System

* Interleave the execution of several
processes to maximize processor
utilization while providing reasonable
response time

* Allocate resources to processes

* Support interprocess communication and
user creation of processes

SEL THE UNIVERSITY OF
el NEW SOUTH WALES

Processes and Threads

* Processes:
— Also called a task or job
— Execution of an individual program
— “Owner” of resources allocated for program execution
— Encompasses one or more threads

e Threads:

— Unit of execution

— Can be traced
« list the sequence of instructions that execute

— Belongs to a process

B THE UNIVERSITY OF >
G| NEW SOUTH WALES

Address Main Memory Program Count

0
- | 5000 Y
Dispatcher
5000
Execution snapshot Process A
of three single-
SN
threaded processes i
(NO Vll’tual Process B
Memory) -
Process C

Figure 3.1 Snapshot of Example Execution (Figure 3
at Instruction Cycle 13

Logical Execution Trace

5000 8000 12000
5001 a001 12001
5002 8002 12002
5003 a003 12003
5004 12004
5005 12005
5006 120006
S007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A (h) Trace of Process B (c) Trace of Process C

2000 = Starting address of program of Process A
000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 Traces of Processes of Figure 3.1

Combined Traces

(Actual CPU
Instructions)

What are the
shaded sections?

1 s000 27 12004
2 5001 2212003
3 s002
4 5003 20100
3 004 30 101
& 5005 31 102
Time out 32 103
7 100 33 104
g 101 34 103
0 102 35 3006
10 103 36 3007
11 104 37 3008
12 103 32 3009
13 2000 30 3010
14 2001 40 5011
15 2002
16 2003 41 100
__________________ /0 request 42 101
17 100 43 102
12101 44 103
19 102 45 104
20 103 46 103
21 104 47 12006
22103 42 12007
23 12000 49 12008
24 12001 300 12009
25 12002 51 12010
26 12003 520 12011

100 = Statmg address of dispatcher program

shaded areas mdicate execution of dispatcher process,
first and third cobumns court mstmction cyeles,

second and fonrth colimns showr address of instructionbeing exemted

Titme out

Titme out

Time out

Figure 33 Combined Trace of Processes of Figure 3.1

One program counter
N— Four program counters

Summary: The Process Model

A Process
q switch
B

C Ai B Y c# DY

Process

> W O O
I
I

D Time ——

J T[T

(a) (b) (c)

Multiprogramming of four programs

Conceptual model of 4 independent, sequential
processes (with a single thread each)

Only one program active at any instant

One Process
omne thread

Oone process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

s = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

Process and thread models of
selected OSes

Single process, single thread
— MSDOS

Single process, multiple threads
— 0S/161 as distributed

Multiple processes, single thread
— Traditional unix

Multiple processes, multiple threads
— Modern Unix (Linux, Solaris), Windows 2000

Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
threads (for historical reasons)

SErY THE UNIVERSITY OF 9
S| NEW SOUTH WALES

Process Creation

Principal events that cause process creation

1. System initialization
 Foreground processes (interactive programs)

 Background processes
Email server, web server, print server, etc.
Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a
running process
* New login shell for an incoming telnet connection

3. User request to create a new process
4. |Initiation of a batch job

Note: Technically, all these cases use the same
system mechanism to create new processes.

- o Cl THE UNIVERSITY OF 10

Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4. Killed by another process (involuntary)

B THE UNIVERSITY OF
P NEW SOUTH WALES

11

Process/Thread States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

* Possible process/thread states
— running
— blocked
— ready

 Transitions between states shown

SErY THE UNIVERSITY OF
S NEW SOUTH WALES

12

Some Transition Causing

Events
Running >Ready
— Voluntary Yield ()
— End of timeslice
Running >Blocked

— Waiting for input
* File, network,
— Waiting for a timer (alarm signal)

— Waiting for a resource to become available

SErY THE UNIVERSITY OF 13
S NEW SOUTH WALES

Dispatcher

« Sometimes also called the scheduler
— The literature is also a little inconsistent on
this point
* Has to choose a Ready process to run
— How??

— It is inefficient to search through all
processes

SErY THE UNIVERSITY OF 14
S| NEW SOUTH WALES

Enter

l -

The Ready Queue

Queue
Dispatch

Pause

e g
Processor !

Exii

(b) Queulng dlagram

15

What about blocked processes?

* When an unblocking event occurs, we also
wish to avoid scanning all processes to
select one to make Ready

B THE UNIVERSITY OF 16
: NEW SOUTH WALES

Using Two Queues

Ready Queue Release
Admit Dispatch
‘ i | Processor
Timeout
EBlocked Queue
o Event Walt
Occurs

B THE UNIVERSITY OF
B NEW SOUTH WALES

(a) Single blocked queue

17

Ready Queue —1 Release
Admit Dispatch .
‘ - Processor

Timeout

Event 1 Queune

Event 1 - Event 1 Wallt
occurs

Event 2 Queune

Event 2 e Event 2 Walt
occurs

¥
¥
¥

Event n Queune

Event n Event n Walt
-—
occurs

() Multiple blocked queues

Implementation of Processes

« A processes’ information is
stored in a process control block

(PCB) P/
 The PCBs form a process table :Zg
— Sometimes the kernel stack for P4
each process is in the PCB P3

— Sometimes some process info is P2

on the kernel stack P1

« E.g. registers in the trapframe in PO

0S/161

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

Implementation of Processes

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Example fields of a process table entry

WL THE UNIVERSITY OF
@S NEW SOUTH WALES

Threads
The Thread Model

Process 1 Process 1 Process 1 Process
\\ | | i
User y
space
Thread Thread
Kernel
space Kernel Kernel
(a) (b)

(a) Three processes each with one thread

The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

 Items shared by all threads in a process
* |ltems private to each thread

SErY THE UNIVERSITY OF 22
S| NEW SOUTH WALES

The Thread Model

Thread 2
Thread | Thread 3
// Process
Thread 1's H«(Thread 3's stack
stack
Kernel

Each thread has its own stack

THE UNIVERSITY OF 23
NEW SOUTH WALES

Thread Model

* Local variables are per thread
— Allocated on the stack

* Global variables are shared between all threads
— Allocated in data section
— Concurrency control is an issue

« Dynamically allocated memory (malloc) can be
global or local
— Program defined

SErY THE UNIVERSITY OF o4
S| NEW SOUTH WALES

Thread Usage

Fonr scare and seven
yews age, our fathers
bmought farth vpan this
continent a new nation
conceived in liberty,
and dedicated 1o the
propasition that all
men are created equal.

Tow we ar sngaged
in a great civil war
testing whether that

nation, ar any nation
sa conceived and so
dedicated, can lang
endure. We are met an
a great battlefisld of
that war.

We have come 1o
dedicate a portion of
that field as a final
Testing place for those
who hewe gave theic

lives that this nation
might live. U s
altogether fitting and
proper that we should
do this.

But, in a largersersz,
we cannet dedicate, we
cannot consecrats we
cannat hallew this
goond. The bave
men, living and dead,

who struggled here
have consscrmted it, far
abave our poar pawer
10 add or detract. The
waorld will lintle note,
mor long remember,
what we say here, but
it can mever forget
what they did here.
1tis for s the living,
wather, to be dedicated

her 1o the unfinished
wotk which they wha
fonght her have this
far so nobly acdvanced.
1t is mther for us 10 be
here dedicated to the
great task remaining
before s, that from
these honored dead we
take incrzased devotion
to that canse for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of frmedom
and thar government of
the people by the
people, for the peaple

&

'

Keyboard

Kernel

D

A word processor with three threads

isk

25

Thread Usage

Web server process

Dispatcher thread
~ ,..ET) ‘ Worker thread
Web page cache
Kernel
Network
connection

User
> space

Kernel
space

A multithreaded Web server

WL THE UNIVERSITY OF
@S NEW SOUTH WALES

26

Thread Usage

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);
}
(a) (b)

* Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

B THE UNIVERSITY OF
B NEW SOUTH WALES

Thread Usage

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

SErY THE UNIVERSITY OF o8
S| NEW SOUTH WALES

Summarising “Why Threads?”

« Simpler to program than a state machine

* Less resources are associated with them than a
complete process
— Cheaper to create and destroy
— Shares resources (especially memory) between them

« Performance: Threads waiting for I1/O can be overlapped
with computing threads

— Note if all threads are compute bound, then there is no
performance improvement (on a uniprocessor)

« Threads can take advantage of the parallelism available
on machines with more than one CPU (multiprocessor)

e THE UNIVERSITY OF 2
el NEW SOUTH WALES

Implementing Threads in User
Space

Process Thread
I
User
space <
=
Kernel {L / i I
space erne
P X
/ N\
Run-time Thread Process
system table table
A user-level threads package
THE UNIVERSITY OF 30

NEW SOUTH WALES

User-level Threads

* Implementation at user-level

— User-level Thread Control Block (TCB), ready
gueue, blocked queue, and dispatcher

— Kernel has no knowledge of the threads (it
only sees a single process)

— If a thread blocks waiting for a resource held
by another thread, its state is save and the
dispatcher switches to another ready thread

— Thread management (create, exit, yield, wait)
are implemented in a runtime support library

- =l L UNIVERSITY OF 31

II. NEW SOUTH WALES

User-Level Threads

* Pros

— Thread management and switching at user level is
much faster than doing it in kernel level

* No need to trap into kernel and back to switch

— Dispatcher algorithm can be tuned to the application
» E.g. use priorities
— Can be implemented on any OS (thread or non-
thread aware)

— Can easily support massive numbers of threads on a
per-application basis
« Use normal application virtual memory

« Kernel memory more contrained. Difficult to efficiently
support wildly differing numbers of threads for different
applications.

e THE UNIVERSITY OF %
el NEW SOUTH WALES

User-level Threads

e Cons

— Threads have to yield() manually (no timer
interrupt delivery to user-level)

» Co-operative multithreading

— A single poorly design/implemented thread can
monopolise the available CPU time

* There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and kludgey.

— Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

SErY THE UNIVERSITY OF 33
S| NEW SOUTH WALES

User-Level Threads

e Cons

— |If a thread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks
« Can’t overlap I/O with computation
» Can use wrappers as a work around
— Example: wrap the read () call
— Use select () to test if read system call would block
» select () then read ()
» Only call read () if it won't block
» Otherwise schedule another thread
— Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking
system calls?

« Can change to kernel to support non-blocking system call
— Lose “on any system” advantage, page faults still a problem.

8L THE UNIVERSITY OF >
GRS NEW SOUTH WALES

Implementing Threads in the Kernel

Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel

THE UNIVERSITY OF 35
NEW SOUTH WALES

Kernel Threads

* Threads are implemented in the kernel

— TCBs are stored in the kernel

* A subset of information in a traditional PCB
— The subset related to execution context

« TCBs have a PCB associated with them

— Resources associated with the group of threads (the
process)

— Thread management calls are implemented
as system calls
» E.g. create, walit, exit

SErY THE UNIVERSITY OF 36
S| NEW SOUTH WALES

Kernel Threads

e Cons

— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

* More expensive than user-level equivalent
* Pros
— Preemptive multithreading

— Parallelism
« Can overlap blocking I/O with computation
« Can take advantage of a multiprocessor

SErY THE UNIVERSITY OF 37
S| NEW SOUTH WALES

Hybrid Schemes

Multiple user threads
on a kernel thread

\ F

Kernel

S S"‘— Kernel thread

= THE UNIVERSITY OF

User
> space

Kernel
space

38

Multiprogramming Implementation

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

/. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
iInterrupt occurs — a thread/context switch

e THE UNIVERSITY OF >
el NEW SOUTH WALES

Thread Switch

« A switch between threads can happen any time
the OS is invoked

— On a system call
« Mandatory if system call blocks or on exit();

— On an exception
« Mandatory if offender is killed

— On an interrupt

 Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
iInstructions

Note instructions do not equal program statements

SErY THE UNIVERSITY OF 40
S NEW SOUTH WALES

Context Switch

* Thread switch must be transparent for threads

— When dispatched again, thread should not notice that
something else was running in the meantime (except
for elapsed time)

—0S must save all state that affects the thread
 This state iIs called the thread context

« Switching between threads consequently results
In a context switch.

41

Simplified
Explicit

Thread a Thread b

threld_switch(a,b) > } .
¢ [hread Switch
1
1
1
} : thread switch(b,a)
1
{ I
1
1
1
1
1
1
1
thread switch(a,b) > } :
1
{ I
1
1
1
1
1
1
1
1
= T1|E UNIVERSITY OF 42

g NEW SOUTH WALES

Example Context Switch

* Running in user mode, SP points to user-
level activation stack

Representation of
Kernel Stack Kernel SP
(Memory)

T THE UNIVERSITY OF *

@l NEW SOUTH WALES

Example Context Switch

« Take an exception, syscall, or interrupt,
and we switch to the kernel stack

Kernel SP

N\

- = THE UNIVERSITY OF 44

B I] NEW SOUTH WALES

Example Context Switch

 We push a frapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

Kernel SP

/

RL| THE UNIVERSITY OF 45
B%% NEw SOUTH WALES

Example Context Switch

« Call ‘C’ code to process syscall, exception,
or interrupt

— Results in a ‘C’ activation stack building up

Kernel SP

/

_‘C’ activation stack| trapframe

EL| THE UNIVERSITY OF ®
S NEW SOUTH WALES

Example Context Switch

* The kernel decides to perform a context switch

— It chooses a target thread (or process)

— It pushes remaining kernel context onto the stack

Kernel SP

-Kernel State

‘C’ activation stack

trapframe

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

47

Example Context Switch

* Any other existing thread must
— be in kernel mode (on a uni processor),

— and have a similar stack layout to the stack we are
currently using
Kernel
stacks of Kernel SP
other
threads

| |Kernel State|'C’ activation stack| trapframe

| |Kernel State|'C’ activation stack| trapframe

| |Kernel State|'C’ activation stack| trapframe

SErY THE UNIVERSITY OF 8

Example Context Switch

» We save the current SP in the PCB (or TCB),
and load the SP of the target thread.

— Thus we have switched contexts

Kernel SP

B THE UNIVERSITY OF 49
@B NEW SOUTH WALES

Example Context Switch

* Load the target thread’s previous context,
and return to C

Kernel SP

L] THE UNIVERSITY OF 50
@S NEW SOUTH WALES

Example Context Switch

* The C continues and (in this example)
returns to user mode.

Kernel SP

SErY THE UNIVERSITY OF =7
% NEW SOUTH WALES

Example Context Switch

* The user-level context is restored

Kernel SP

SEL THE UNIVERSITY OF 52
BESE NEW SOUTH WALES

Example Context Switch

 The user-level SP Is restored

Kernel SP

= THE UNIVERSITY OF 53
NEW SOUTH WALES

The Interesting Part of a Thread

Switch

* \What does the “push kernel state” part
do???

Kernel SP

TRL| THE UNIVERSITY OF 54
BRE| NEW SOUTH WALES

0S/161 md switch

md switch(struct pcb *old, struct pcb *nu)
{
if (old==nu) {
return;
}
/*
* Note: we don't need to switch curspl, because splhigh/()
* should always be in effect when we get here and when we
* leave here.

*/

old->pcb kstack = curkstack;
old->pcb ininterrupt = in interrupt;

curkstack = nu->pcb kstack;
in interrupt = nu->pcb ininterrupt;

mips switch(old, nu);

0S/161 mips switch

mips switch:

/%

* a0 contains a pointer to the old thread's struct pcb.

* al contains a pointer to the new thread's struct pcb.

*

* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved
* on the stack, namely:

*

* s0-s8

* gp, ra

*

* The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

THE UNIVERSITY OF 56
NEW SOUTH WALES

/* Save the registers */

SW
SW
SW
SwW
SwW
SW
SW
SW
SW
SW

SwW

/*

SW

ra,
gap.,
s8,
s7,
s6,
s5,
s4,
s3,
s2,
sl,
s0,

Store
sSp,

0S/161 mips switch

40 (sp)
36 (sp)
32 (sp)
28 (sp)
24 (sp)
20 (sp)
16 (sp)
12 (sp)
8 (sp)

4 (sp)

0(sp)

the old stack pointer in the old pcb */
0 (a0)

WL THE UNIVERSITY OF

NEW SOUTH WALES

S7

0S/161 mips switch

/* Get the new stack pointer from the new pcb */
1w sp, O0(al)
nop /* delay slot for load */

/* Now, restore the registers */

1w s0, O0(sp)
1w sl, 4(sp)
lw s2, 8(sp)
1w s3, 12(sp)
1w sd4, 16(sp)
1w s5, 20(sp)
1w s6, 24 (sp)
1w s7, 28(sp)
1w s8, 32(sp)
1w gp, 36(sp)
1w ra, 40 (sp)
nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */
.end mips switch

Thread a Thread b ReV|S|t|ng

Thread Switch

mips_'_switch (a,b) > }
1
{ 1
1
1
1
1
} : < mips_ gwitch(b,a)
1
{ I
1
1
1
1
1
1
1
1
1
mips; switch(a,b) > } :
1
{ I
1
1
1
1
1
1
1
1
1
1
THE UNIVERSITY OF 59

B NEw SOUTH WALES

