
-- --

Vnodes: An Architecture for Multiple File System Types in Sun UNIX

S.R. Kleiman

Sun Microsystems
sun!srk

1. Introduction

This paper describes an architecture for accommodating multiple file system implementations within the
Sun UNIX† kernel. The file system implementations can encompass local, remote, or even non-UNIX file
systems. These file systems can be "plugged" into the kernel through a well defined interface, much the
same way as UNIX device drivers are currently added to the kernel.

2. Design Goals

�Split the file system implementation independent and the file system implementation dependent
functionality of the kernel and provide a well defined interface between the two parts.

�The interface must support (but not require) UNIX file system access semantics. In particular it must
support local disk file systems such as the 4.2BSD file system[1], stateless remote file systems such as
Sun’s NFS[2], statefull remote file systems such as AT&T’s RFS, or non-UNIX file systems such as the
MSDOS file system[3].

�The interface must be usable by the server side of a remote file system to satisfy client requests.

�All file system operations should be atomic. In other words, the set of interface operations should be at
a high enough level so that there is no need for locking (hard locking, not user advisory locking) across
several operations. Locking, if required, should be left up to the file system implementation dependent
layer. For example, if a relatively slow computer running a remote file system requires a
supercomputer server to lock a file while it does several operations, the users of the supercomputer
would be noticeably affected. It is much better to give the file system dependent code full information
about what operation is being done and let it decide what locking is necessary and practical.

3. Implementation goals and techniques

These implementation goals were necessary in order to make future implementation easier as the kernel
evolved.

�There should be little or no performance degradation.

�The file system independent layer should not force static table sizes. Most of the new file system types
use a dynamic storage allocator to create and destroy objects.

�Different file system implementations should not be forced to use centralized resources (e.g inode table,
mount table or buffer cache). However, sharing should be allowed.

�The interface should be reentrant. In other words, there should be no implicit references to global data
(e.g. u.u_base) or any global side effect information passed between operations (e.g. u.u_dent).
This has the added benefit of cutting down the size of the per user global data area (u area). In addition,
all the interface operations return error codes as the return value. Overloaded return codes and
u.u_error should not be used.

�The changes to the kernel should be implemented by an "object oriented" programming approach. Data
structures representing objects contain a pointer to a vector of generic operations on the object.
Implementations of the object fill in the vector as appropriate. The complete interface to the object is

������������������

† UNIX is a trademark of AT&T

1



-- --

specified by its data structure and its generic operations. The object data structures also contain a
pointer to implementation specific data. This allows implementation specific information to be hidden
from the interface.

�Each interface operation is done on behalf of the current process. It is permissible for any interface
operation to put the current process to sleep in the course of performing its function.

System Calls

Vnode Layer

4.2BSD File System

Disk

PC File System

Floppy

NFS NFS Server

Network

Figure 1. Vnode architecture block diagram

4. Operation

The file system dependent/independent split was done just above the UNIX kernel inode layer. This was an
obvious choice, as the inode was the main object for file manipulation in the kernel. A block diagram of
the architecture is shown in Figure 1. The file system independent inode was renamed vnode (virtual
node). All file manipulation is done with a vnode object. Similarly, file systems are manipulated through
an object called a vfs (virtual file system). The vfs is the analog to the old mount table entry. The file
system independent layer is generally referred to a the vnode layer. The file system implementation
dependent layer is called by the file system type it implements (e.g. 4.2BSD file system, NFS file system).
Figure 2 shows the definition of the vnode and vfs objects.

4.1 Vfs’s

Each mounted vfs is linked into a list of mounted file systems. The first file system on the list is always the
root. The private data pointer (vfs_data) in the vfs points to file system dependent data. In the 4.2BSD
file system, vfs_data points to a mount table entry. The public data in the vfs structure contains data
used by the vnode layer or data about the mounted file system that does not change.

Since different file system implementations require different mount data, the mount(2) system call was
changed. The arguments to mount(2) now specify the file system type, the directory which is the mount
point, generic flags (e.g. read only), and a pointer to file system type specific data. When a mount system

2



-- --

struct vfs {
struct vfs *vfs_next; /* next vfs in list */
struct vfsops *vfs_op; /* operations on vfs */
struct vnode *vfs_vnodecovered; /* vnode we cover */
int vfs_flag; /* flags */
int vfs_bsize; /* native block size */
caddr_t vfs_data; /* private data */

};
struct vfsops {

int (*vfs_mount)();
int (*vfs_unmount)();
int (*vfs_root)();
int (*vfs_statfs)();
int (*vfs_sync)();
int (*vfs_fid)();
int (*vfs_vget)();

};

enum vtype { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VBAD };
struct vnode {

u_short v_flag; /* vnode flags */
u_short v_count; /* reference count */
u_short v_shlockc; /* # of shared locks */
u_short v_exlockc; /* # of exclusive locks */
struct vfs *v_vfsmountedhere; /* covering vfs */
struct vnodeops *v_op; /* vnode operations */
union {

struct socket *v_Socket; /* unix ipc */
struct stdata *v_Stream; /* stream */

};
struct vfs *v_vfsp; /* vfs we are in */
enum vtype v_type; /* vnode type */
caddr_t v_data; /* private data */

};
struct vnodeops {

int (*vn_open)();
int (*vn_close)();
int (*vn_rdwr)();
int (*vn_ioctl)();
int (*vn_select)();
int (*vn_getattr)();
int (*vn_setattr)();
int (*vn_access)();
int (*vn_lookup)();
int (*vn_create)();
int (*vn_remove)();
int (*vn_link)();
int (*vn_rename)();
int (*vn_mkdir)();
int (*vn_rmdir)();
int (*vn_readdir)();
int (*vn_symlink)();
int (*vn_readlink)();
int (*vn_fsync)();
int (*vn_inactive)();
int (*vn_bmap)();
int (*vn_strategy)();
int (*vn_bread)();
int (*vn_brelse)();

};

Figure 2. Vfs and vnode objects

3



-- --

call is performed, the vnode for the mount point is looked up (see below) and the vfs_mount operation
for the file system type is called. If this succeeds, the file system is linked into the list of mounted file
systems, and the vfs_vnodecovered field is set to point to the vnode for the mount point. This field is
null in the root vfs. The root vfs is always first in the list of mounted file systems.

Once mounted, file systems are named by the path name of their mount points. Special device name are no
longer used because remote file systems do not necessarily have a unique local device associated with
them. Umount(2) was changed to unmount(2) which takes a path name for a file system mount point
instead of a device.

The root vnode for a mounted file system is obtained by the vfs_root operation, as opposed to always
referencing the root vnode in the vfs structure. This allows the root vnode to be deallocated if the file
system is not being referenced. For example, remote mount points can exist in "embryonic" form, which
contains just enough information to actually contact the server and complete the remote mount when the
file system is referenced. These mount points can exist with minimal allocated resources when they are not
being used.

4.2 Vnodes

The public data fields in each vnode either contain data that is manipulated only by the vfs layer or data
about the file that does not change over the life of the file, such as the file type (v_type). Each vnode
contains a reference count (v_count) which is maintained by the generic vnode macros VN_HOLD and
VN_RELE. The vnode layer and file systems call these macros when vnode pointers are copied or
destroyed. When the last reference to a vnode is destroyed, the vn_inactive operation is called to tell
the vnode’s file system that there are no more references. The file system may then destroy the vnode or
cache it for later use. The v_vfsp field in the vnode points to the vfs for the file system to which the
vnode belongs. If a vnode is a mount point, the v_vfsmountedhere field points to the vfs for another
file system. The private data pointer (v_data) in the vnode points to data that is dependent on the file
system. In the 4.2BSD file system v_data points to an in core inode table entry.

Vnodes are not locked by the vnode layer. All hard locking (i.e. not user advisory locks) is done within the
file system dependent layer. Locking could have been done in the vnode layer for synchronization
purposes without violating the design goal; however, it was found to be not necessary.

4.3 An example

Figure 3 shows an example vnode and vfs object interconnection. In figure 3, vnode1 is a file or
directory in a 4.2BSD type file system. As such, it’s private data pointer points to an inode in the 4.2BSD
file system’s inode table. Vnode1 belongs to vfs1, which is the root vfs, since it is the first on the vfs
list (rootvfs). Vfs1’s private data pointer points to a mount table entry in the 4.2BSD file system’s
mount table. Vnode2 is a directory in vfs1, which is the mount point for vfs2. Vfs2 is an NFS
file system, which contains vnode3.

4.4 Path name traversal

Path name traversal is done by the lookuppn routine (lookup path name), which takes a path name in a path
name buffer and returns a pointer to the vnode which the path represents. This takes the place of the old
namei routine.

If the path name begins with a "/", Path name traversal starts at the vnode pointed to by either u.u_rdir
or the root. Otherwise it starts at the vnode pointed to by u.u_cdir (the current directory). Lookuppn
traverses the path one component at a time using the vn_lookup vnode operation. Vn_lookup takes
a directory vnode and a component as arguments and returns a vnode representing that component. If a
directory vnode has v_vfsmountedhere set, then it is a mount point. When a mount point is
encountered going down the file system tree, lookuppn follows the vnode’s v_vfsmountedhere
pointer to the mounted file system and calls the vfs_root operation to obtain the root vnode for the file
system. Path name traversal then continues from this point. If a root vnode is encountered (VROOT flag
in v_flag set) when following "..", lookuppn follows the vfs_vnodecovered pointer in the vnode’s
associated vfs to obtain the covered vnode. If a symbolic link is encountered lookuppn calls the

4



-- --

rootvfs vfs_next
vfs1

vfs_vnodecovered

vfs_data

vfs_next
vfs2

vfs_vnodecovered

vfs_data

v_vfsp
vnode1

v_vfsmountedhere

v_data

v_vfsp
vnode2

v_vfsmountedhere

v_data

v_vfsp
vnode3

v_vfsmountedhere

v_data

inode1 inode2 rnode1

mount mntinfo

4.2BSD File System NFS

Figure 3. Example vnode layer object interconnection

5



-- --

vn_readlink vnode operation to obtain the symbolic link. If the symbolic link begins with a "/", the
path name traversal is restarted from the root (or u.u_rdir); otherwise the traversal continues from the
last directory. The caller of lookuppn specifies whether the last component of the path name is to be
followed if it is a symbolic link. This process continues until the path name is exhausted or an error occurs.
When lookuppn completes, a vnode representing the desired file is returned.

4.5 Remote file systems

The path name traversal scheme implies that files on remote file systems appear as files within the normal
UNIX file name space. Remote files are not named by any special constructs that current programs don’t
understand[4]. The path name traversal process handles all indirection through mount points. This means
that in a remote file system implementation, the client maintains its own mount points. If the client mounts
another file system on a remote directory, the remote file system will never see references below the new
mount point. Also, the remote file system will not see any ".." references at the root of the remote file
system. For example, if the client has mounted a server’s "/usr" on his "/usr" and a local file system on
"/usr/local" then the path "/usr/local/bin" will access the local root, the remote "/usr" and the local
"/usr/local" without the remote file system having any knowledge of the "/usr/local" mount point.
Similarly, the path "/usr/.." will access the local root, the remote "/usr" and the local root, without the
remote file system (or the server) seeing the ".." out of "/usr".

4.6 New system calls

Three new system calls were added in order to make the normal application interface file system
implementation independent. The getdirentries(2) system call was added to read directories in a manner
which is independent of the on disk directory format. Getdirentries reads directory entries from an open
directory file descriptor into a user buffer, in file system independent format. As many directory entries as
can fit in the buffer are read. The file pointer is is changed so that it points at directory entry boundaries
after each call to getdirentries. The statfs(2) and fstatfs(2) system calls were added to get general file
system statistics (e.g. space left). Statfs and fstatfs take a path name or a file descriptor, respectively, for a
file within a particular file system, and return a statfs structure (see below).

4.7 Devices

The device interfaces, bdevsw and cdevsw, are hidden from the vnode layer, so that devices are only
manipulated through the vnode interface. A special device file system implementation, which is never
mounted, is provided to facilitate this. Thus, file systems which have a notion of associating a name within
the file system with a local device may redirect vnodes to the special device file system.

4.8 The buffer cache

The buffer cache routines have been modified to act either as a physical buffer cache or a logical buffer
cache. A local file system typically uses the buffer cache as a cache of physical disk blocks. Other file
system types may use the buffer cache as a cache of logical file blocks. Unique blocks are identified by the
pair (vnode-pointer, block-number). The vnode pointer points to a device vnode when a cached block is a
copy of a physical device block, or it points to a file vnode when the block is a copy of a logical file block.

5. VFS operations

In the following descriptions of the vfs operations the vfsp argument is a pointer to the vfs that the
operation is being applied to.

vfs_mount(vfsp,pathp,datap) Mount vfsp (i.e. read the superblock etc.). Pathp points to the path name
to be mounted (for recording purposes), and datap points to file system
dependent data.

vfs_unmount(vfsp) Unmount vfsp (a.e. sync the superblock).

vfs_root(vfsp,vpp) Return the root vnode for this file system. Vpp points to a pointer to a
vnode for the results.

6



-- --

vfs_statfs(vfsp,sbp) Return file system information. Sbp points to a statfs structure for the
results.

struct statfs {
long f_type; /* type of info */
long f_bsize; /* block size */
long f_blocks; /* total blocks */
long f_bfree; /* free blocks */
long f_bavail; /* non-su blocks */
long f_files; /* total # of nodes */
long f_ffree; /* free nodes in fs */
fsid_t f_fsid; /* file system id */
long f_spare[7]; /* spare for later */

};

vfs_sync(vfsp) Write out all cached information for vfsp. Note that this is not necessarily
done synchronously. When the operation returns all data has not
necessarily been written out, however it has been scheduled.

vfs_fid(vfsp,vp,fidpp) Get a unique file identifier for vp which represents a file within this file
system. Fidpp points to a pointer to a fid structure for the results.

struct fid {
u_short fid_len; /* length of data */
char fid_data[1]; /* variable size */

};

vfs_vget(vfsp,vpp,fidp) Turn unique file identifier fidp into a vnode representing the file associated
with the file identifier. vpp points to a pointer to a vnode for the result.

6. Vnode operations

In the following descriptions of the vnode operations, the vp argument is a pointer to the vnode to which
the operation is being applied; the c argument is a pointer to a credentials structure which contains the user
credentials (e.g. uid) to use for the operation; and the nm argument is a pointer to a character string
containing a name.

vn_open(vpp,f,c) Perform any open protocol on a vnode pointed to by vpp (e.g. devices). If
the open is a "clone" open the operation may return a new vnode. F is the
open flags.

vn_close(vp,f,c) Perform any close protocol on a vnode (e.g. devices). Called on the
closing of the last reference to the vnode from the file table, if vnode is a
device. Called on the last user close of a file descriptor, otherwise. F is
the open flags.

vn_rdwr(vp,uiop,rw,f,c) Read or write vnode. Reads or writes a number of bytes at a specified
offset in the file. Uiop points to a uio structure which supplies the I/O
arguments. Rw specifies the I/O direction. F is the I/O flags, which may
specify that the I/O is to be done synchronously (i.e. don’t return until all
the volatile data is on disk) and/or in a unit (i.e. lock the file to write a
large unit).

vn_ioctl(vp,com,d,f,c) Perform an ioctl on vnode vp. Com is the command, d is the pointer to the
data, and f is the open flags.

vn_select(vp,w,c) Perform a select on vp. W specifies the I/O direction.

vn_getattr(vp,va,c) Get attributes for vp. Va points to a vattr structure.

7



-- --

struct vattr {
enum vtype va_type; /* vnode type */
u_short va_mode; /* acc mode */
short va_uid; /* owner uid */
short va_gid; /* owner gid */
long va_fsid; /* fs id */
long va_nodeid; /* node # */
short va_nlink; /* # links */
u_long va_size; /* file size */
long va_blocksize; /* block size */
struct timeval va_atime; /* last acc */
struct timeval va_mtime; /* last mod */
struct timeval va_ctime; /* last chg */
dev_t va_rdev; /* dev */
long va_blocks; /* space used */

};

This must map file system dependent attributes to UNIX file attributes.

vn_setattr(vp,va,c) Set attributes for vp. Va points to a vattr structure, but only mode, uid, gid,
file size, and times may be set. This must map UNIX file attributes to file
system dependent attributes.

vn_access(vp,m,c) Check access permissions for vp. Returns error if access is denied. M is
the mode to check for access (e.g. read, write, execute). This must map
UNIX file protection information to file system dependent protection
information.

vn_lookup(vp,nm,vpp,c) Lookup a component name nm in directory vp. Vpp points to a pointer to a
vnode for the results.

vn_create(vp,nm,va,e,m,vpp,c) Create a new file nm in directory vp. Va points to an vattr structure
containing the attributes of the new file. E is the exclusive/non-exclusive
create flag. M is the open mode. vpp points to a pointer to a vnode for the
results.

vn_remove(vp,nm,c) Remove a file nm in directory vp.

vn_link(vp,tdvp,tnm,c) Link the vnode vp to the target name tnm in the target directory tdvp.

vn_rename(vp,nm,tdvp,tnm,c) Rename the file nm in directory vp to tnm in target directory tdvp. The
node can’t be lost if the system crashes in the middle of the operation.

vn_mkdir(vp,nm,va,vpp,c) Create directory nm in directory vp. Va points to an vattr structure
containing the attributes of the new directory and vpp points to a pointer to
a vnode for the results.

vn_rmdir(vp,nm,c) Remove the directory nm from directory vp.

vn_readdir(vp,uiop,c) Read entries from directory vp. Uiop points to a uio structure which
supplies the I/O arguments. The uio offset is set to a file system dependent
number which represents the logical offset in the directory when the
reading is done. This is necessary because the number of bytes returned
by vn_readdir is not necessarily the number of bytes in the equivalent part
of the on disk directory.

vn_symlink(vp,lnm,va,tnm,c) Symbolically link the path pointed to by tnm to the name lnm in directory
vp.

vn_readlink(vp,uiop,c) Read symbolic link vp. Uiop points to a uio structure which supplies the
I/O arguments.

vn_fsync(vp,c) Write out all cached information for file vp. The operation is synchronous
and does not return until the I/O is complete.

8



-- --

vn_inactive(vp,c) The vp is no longer referenced by the vnode layer. It may now be
deallocated.

vn_bmap(vp,bn,vpp,bnp) Map logical block number bn in file vp to physical block number and
physical device. Bnp is a pointer to a block number for the physical block
and vpp is a pointer to a vnode pointer for the physical device. Note that
the returned vnode is not necessarily a physical device. This is used by the
paging system to premap files before they are paged. In the NFS this is a
null mapping.

vn_strategy(bp) Block oriented interface to read or write a logical block from a file into or
out of a buffer. Bp is a pointer to a buffer header which contains a pointer
to the vnode to be operated on. Does not copy through the buffer cache if
the file system uses it. This is used by the buffer cache routines and the
paging system to read blocks into memory.

vn_bread(vp,bn,bpp) Read a logical block bn from a file vp and return a pointer to a buffer
header in bpp which contains a pointer to the data. This does not
necessarily imply the use of the buffer cache. This operation is useful
avoid extra data copying on the server side of a remote file system.

vn_brelse(vp,bp) The buffer returned by vn_bread can be released.

6.1 Kernel interfaces

A veneer layer is provided over the generic vnode interface to make it easier for kernel subsystems to
manipulate files:

vn_open Perform permission checks and then open a vnode given by a path name.

vn_close Close a vnode.

vn_rdwr Build a uio structure and read or write a vnode.

vn_create Perform permission checks and then create a vnode given by a path name.

vn_remove Remove a node given by a path name.

vn_link Link a node given by a source path name to a target given by a target path name.

vn_rename Rename a node given by a source path name to a target given by a target path name.

VN_HOLD Increment the vnode reference count.

VN_RELE Decrement the vnode reference count and call vn_inactive if this is the last reference.

Many system calls which take names do a lookuppn to resolve the name to a vnode then call the
appropriate veneer routine to do the operation. System calls which work off file descriptors pull the vnode
pointer out of the file table and call the appropriate veneer routine.

7. Current status

The current interface has been in operation since the summer of 1984, and is a released Sun product. In
general, the system performance degradation was nil to 2% depending on the benchmark. To date the
4.2BSD file system, the Sun Network File System, and an MSDOS floppy disk file system have been
implemented under the interface, with other file system types to follow. In addition, a prototype "/proc"
file system[5] has been implemented. It is also possible to configure out all the disk based file systems and
run with just the NFS. Throughout this time the interface definition has been stable, with minor additions,
even though several radically different file system types were implemented. Vnodes has been proven to
provide a clean, well defined interface to different file system implementations.

Sun is currently discussing with AT&T and Berkeley the merging of this interface with AT&T’s File
System Switch technology. The goal is to produce a standard UNIX file system interface. Some of the

9



-- --

current issues are:

�Allow multiple component lookup in vn_lookup. This would require file systems that implemented
this to know about mount points.

�Cleaner replacements for vn_bmap, vn_strategy, vn_bread, and vn_brelse.

�Symlink handling in the file system independent layer.

�Eliminate redundant lookups.

8. Acknowledgements

Bill Joy is the designer of the architecture, and provided much help in its implementation. Dan Walsh
modified bio and implemented parts of the device interface as well as parts of the 4.2BSD file system port.
Russel Sandberg was the primary NFS implementor. He also built the prototype "/proc" file system and
improved the device interface. Bill Shannon, Tom Lyon and Bob Lyon were invaluable in reviewing and
evolving the interface.

REFERENCES

1. M.K. McKusick, W. Joy, S. Leffler, R. Fabry, "A Fast File System for UNIX, ACM TOCS, 2, 3, August
1984, pp 181-197.

2. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, "Design and Implementation of the Sun
Network Filesystem", USENIX Summer 1985, pp 119-130.

3. IBM, "DOS Operating System Version 2.0", January 1983.

4. R. Pike, P. Weinberger, "The Hideous Name" USENIX Summer 1985, pp 563-568.

5. T.J. Killian, "Processes as Files", USENIX Summer 1985, pp 203-207.

10


