Threads and Processes — Part 1
Slide 1 COMP3231/COMP9201 Operating Systems

2003/52

MAJOR REQUIREMENTS OF AN OS
[Interleave the execution of several programs
o to maximize utilization of CPU and other resources while
providing reasonable response time
Slide 2 o to support multiple user working interactively
o for convenience (e.g., compile program while editing other
file)
[0 Allocate resources required for execution of programs
[0 Support communication between executing programs

MAJOR REQUIREMENTS OF AN OS

Previously, we listed several definitions of the tferm Process:
0 A program in execution
O Aninstance of a program running on a computer
0 A unit of execution characterised by
e asingle, sequential thread of execution
e Q current state

e an associated set of system resources (memory, devices,
files)

Slide 3

0 Unit of resource ownership

Many applications consist of more than one thread of
execution which share resources
= distinction between thread and process

PROCESSES AND THREADS

Process:
O “Owner” of resources allocated for individual program
execution
0 Can encompass more than one thread of execution
- Outlook, Evolution: different threads for calendar, mail

Slide 4 components etc

Thread:
O Unit of execution
0 Belongs to a process
O Can be fraced

o list the sequence of instructions that execute

EXAMPLE: WEB SERVER

EXAMPLE: WEB SERVER

Web server process

|
!

Dispatcher thread
Worker thread User
Slide 5 space
Web page cache
Kernel
Kernel } space
Network
connection
SINGLE-THREADED WEB SERVER IMPLEMENTATIONS
0 Sequential processing of requests:
- web server gets request, processes it, accepts next request
- CPU idle while data retrieved from disk
- Poor performance
O Finite-State Machine:
Slide 6 - use non-blocking read

- program records state of current request
- gets next event

- on reply (signal) from disk, fetches and processes data
- good performance, complicated o implement and debug

0 Processes instead of Threads

o Communicate by sharing data, messages

ADVANTAGES OF THREADS

ADVANTAGES OF THREADS
0 Program does not stall when one of its operations blocks

e save contents of a page to disk while downloading other
page
Slide 7 0 Overhead for thread creation and destruction is less than for
processes (depending on implementation, can be about a
factor of 100 faster)
O Simplification of programming model
0 Performace gains on machines with multiole CPU’s

THREADS AND PROCESSES

one process

SII de 8 one thread

one process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

TR L L L

THREADS AND PROCESSES 4

Logical fraces of threads:
THREADS AND PROCESSES

: - 1 5000 18 100
0 Single process, single thread 2 5001 ;g 18;
- 3 5002 1
o MS-DOS, old MacOS 1 5003 57 103
0 Single process, multiple threads 5 5004 22 104
6 5005 23 105
e 0S/161 as distributed Time out 24 12000
Muttiol o 1h g 7 100 25 12001
i 0 Multiple processes, single threa i 8 101 26 12002
Slide 9 g Slide 11 9 102 27 12003
o fraditional Unix 10 103 28 12004
) . 11 104 29 12005
0 Multiple processes, multiple threads 12105 —— Time out
. s . 13 8000 30 100
e modern Unices (Solaris, Linux), Windows-2000 14 8001 31 101
15 8002 32 102
Note: Literature (incl. textbooks) often do not cleanly }f7> 2883 gi }82
distinguish those concepts (for historical reasons)! ——— I/O request 35 105

Logical fraces of threads:
THREAD STATES

Three states (may be more, depending on implementation):

5000 8000 12000)
5001 8001 12001 5000: Starting address of code for Thread A O Running: currently active, using CPU
288;25 288§ 1388;23 8000: Starting address of code for Thread B 0 Ready: runnable, waiting to be scheduled
slide 10 288?) ngg 12000:Starting address of code for Thread C slide 12 O Blocked: waiting for an event to occur (I/O, alarm)
5006 12006
5007 12007 @
5008 12008 1. Process blocks for input
5009 12009 2 2. Scheduler picks another process
28}[]) }gg}? 3. Scheduler picks this process

Blocked 4. Input becomes available

Thread A Thread B Thread C

THREADS AND PROCESSES 5 REASONS FOR LEAVING THE RUNNING STATE

Slide 13

Slide 14

REASONS FOR LEAVING THE RUNNING STATE
0 Thread terminates

o exitQ) system call (voluntary termination)
¢ kiled by another thread
o killed by OS (due to exception)

O Thread cannot continue execution
o blocked waiting for event (1/0)

O OS decides to give someone else a chance
e requires the OS to be invoked

- via system call or exception
- via interrupt

0 Thread voluntarily gives another thread a chance

o yield() system call

NON-RUNNING THREADS
O Many separate reasons for a thread not running

¢ another thread is running on the CPU
o thread is blocked (waiting for an event)
o thread is in initialisation phase (during creation)
o thread is being cleaned up (during exit, kill)
0 Dispatching ought to be fast

¢ Shouldn’t search through all threads to find runnable one

o Achieved by distinguishing more thread states

SEPARATE QUEUES

Slide 15

Slide 16

Admit

Event

SEPARATE QUEUES

Ready Queue

Disp 1
—»J_l_l_l_l_l_'—» Processor|
3

Timeout

i

Release

Occurs

Blocked Queue

Event Wait

{1~

e Simplifies scheduler’s job

occurs?

e How about wakeup of blocked thread when event

Admit

[

Multiple wait queues:

Ready Queue

Timeout

Dispatch 1
A

Release

Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 1 Queue

Event 1 Wait

Event 2 Queue

Event 2 Wait

¥
¥
¥

Event n Queue

Event n Wait

COOPERATIVE VS. PREEMPTIVE MULTITHREADING

COOPERATIVE VS. PREEMPTIVE MULTITHREADING

Cooperative multithreading:
O Threads determine exact order of execution
0 Use yield(O to switch between threads
O Problems if thread doesn’t yield (e.g., buggy)

Slide 17 Slide 19

Preemptive multitasking:
0 OS preempts thread’s execution after some time
O Only guaranteed to work if H/W provides timer interrupt
O Implies unpredictable execution sequencel

o thread switch can happen between any two instructions
o threads may require concurrency control

USER-LEVEL OPERATIONS ON THREADS IN OS/161
0 Start a new thread in OS/161

thread_fork(const char * nane,
voi d * dat al,
unsi gned | ong dat a2,
voi d (* func)(void *, unsigned |ong),
struct thread **ret);

Slide 18
0 Terminate thread

e thread._exit()
0 Yield CPU

e thread.yield()
O Synchronisation:

e thread._sl eep(const void *addr)
e t hread_wakeup(const void *addr)

PROCESSES AND THREADS

The OS stores information about Threads and Processes in

Thread Control Block (TCB) and Process Controll Block (PCB)
0 PCBs stored in process table
O TCBs stored in thread table

| | Process | Thread |

Address Space 0

Registers 0
Program Counter 0

Stack 0

Open Files 0

State 0
Signals and Handlers | [J

Accounting Info O O
Global Variables

PROCESSES AND THREADS 9 PROCESSES AND THREADS

