
Slide 1

Threads and Processes — Part 1

COMP3231/COMP9201 Operating Systems

2003/S2

Slide 2

MAJOR REQUIREMENTS OF AN OS

➜ Interleave the execution of several programs

� to maximize utilization of CPU and other resources while

providing reasonable response time

� to support multiple user working interactively

� for convenience (e.g., compile program while editing other

file)

➜ Allocate resources required for execution of programs

➜ Support communication between executing programs

MAJOR REQUIREMENTS OF AN OS 1

Slide 3

Previously, we listed several definitions of the term Process:

✱ A program in execution

✱ An instance of a program running on a computer

✱ A unit of execution characterised by

� a single, sequential thread of execution

� a current state

� an associated set of system resources (memory, devices,

files)

✱ Unit of resource ownership

Many applications consist of more than one thread of

execution which share resources

� � distinction between thread and process

Slide 4

PROCESSES AND THREADS

Process:

➜ “Owner” of resources allocated for individual program

execution

➜ Can encompass more than one thread of execution

- Outlook, Evolution: different threads for calendar, mail

components etc

Thread:

➜ Unit of execution

➜ Belongs to a process

➜ Can be traced
� list the sequence of instructions that execute

EXAMPLE: WEB SERVER 2

Slide 5

EXAMPLE: WEB SERVER

Dispatcher thread

Worker thread

Web page cache

Kernel

Network

connection

Web server process

User

space

Kernel

space

Slide 6

SINGLE-THREADED WEB SERVER IMPLEMENTATIONS

➜ Sequential processing of requests:

- web server gets request, processes it, accepts next request

- CPU idle while data retrieved from disk

- Poor performance

➜ Finite-State Machine:

- use non-blocking read

- program records state of current request

- gets next event

- on reply (signal) from disk, fetches and processes data

- good performance, complicated to implement and debug

➜ Processes instead of Threads

� Communicate by sharing data, messages

ADVANTAGES OF THREADS 3

Slide 7

ADVANTAGES OF THREADS

➀ Program does not stall when one of its operations blocks

� save contents of a page to disk while downloading other

page

➁ Overhead for thread creation and destruction is less than for

processes (depending on implementation, can be about a

factor of 100 faster)

➂ Simplification of programming model

➃ Performace gains on machines with multiple CPU’s

Slide 8

THREADS AND PROCESSES

one process

one thread

one process

multiple threads

multiple processes

one thread per process

multiple processes

multiple threads per process

THREADS AND PROCESSES 4

Slide 9

THREADS AND PROCESSES

➜ Single process, single thread

� MS-DOS, old MacOS

➜ Single process, multiple threads

� OS/161 as distributed

➜ Multiple processes, single thread

� traditional Unix

➜ Multiple processes, multiple threads

� modern Unices (Solaris, Linux), Windows-2000

Note: Literature (incl. textbooks) often do not cleanly

distinguish those concepts (for historical reasons)!

Slide 10

Logical traces of threads:

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

Thread A

8000
8001
8002
8003

Thread B

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

Thread C

5000: Starting address of code for Thread A

8000: Starting address of code for Thread B

12000:Starting address of code for Thread C

THREADS AND PROCESSES 5

Slide 11

Logical traces of threads:

Time out

I/O request

Time out

1 5000
2 5001
3 5002
4 5003
5 5004
6 5005

7 100
8 101
9 102
10 103
11 104
12 105
13 8000
14 8001
15 8002
16 8003
17 8004

18 100
19 101
20 102
21 103
22 104
23 105
24 12000
25 12001
26 12002
27 12003
28 12004
29 12005

30 100
31 101
32 102
33 103
34 104
35 105

Slide 12

THREAD STATES

Three states (may be more, depending on implementation):

➀ Running: currently active, using CPU

➁ Ready: runnable, waiting to be scheduled

➂ Blocked: waiting for an event to occur (I/O, alarm)

1 23

4
Blocked

Running

Ready

1. Process blocks for input

2. Scheduler picks another process

3. Scheduler picks this process

4. Input becomes available

REASONS FOR LEAVING THE RUNNING STATE 6

Slide 13

REASONS FOR LEAVING THE RUNNING STATE

➜ Thread terminates

� exit() system call (voluntary termination)

� killed by another thread

� killed by OS (due to exception)

➜ Thread cannot continue execution

� blocked waiting for event (I/O)

➜ OS decides to give someone else a chance

� requires the OS to be invoked

– via system call or exception

– via interrupt

➜ Thread voluntarily gives another thread a chance

� yield() system call

Slide 14

NON-RUNNING THREADS

➜ Many separate reasons for a thread not running

� another thread is running on the CPU

� thread is blocked (waiting for an event)

� thread is in initialisation phase (during creation)

� thread is being cleaned up (during exit, kill)

➜ Dispatching ought to be fast

� Shouldn’t search through all threads to find runnable one

� Achieved by distinguishing more thread states

SEPARATE QUEUES 7

Slide 15

SEPARATE QUEUES

Dispatch

Timeout

Event WaitEvent

Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

� Simplifies scheduler’s job

� How about wakeup of blocked thread when event

occurs?

Slide 16

Multiple wait queues:

Event 1 Wait

Event 2 Wait

Event n Wait

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue

Event 1

Occurs

Event 2

Occurs

Event n

Occurs

Event 2 Queue

Event n Queue

¥

¥

¥

COOPERATIVE VS. PREEMPTIVE MULTITHREADING 8

Slide 17

COOPERATIVE VS. PREEMPTIVE MULTITHREADING

Cooperative multithreading:

➜ Threads determine exact order of execution

➜ Use yield() to switch between threads

➜ Problems if thread doesn’t yield (e.g., buggy)

Preemptive multitasking:

➜ OS preempts thread’s execution after some time

➜ Only guaranteed to work if H/W provides timer interrupt

➜ Implies unpredictable execution sequence!

� thread switch can happen between any two instructions

� threads may require concurrency control

Slide 18

USER-LEVEL OPERATIONS ON THREADS IN OS/161

➜ Start a new thread in OS/161

thread_fork(const char * name,

void * data1,

unsigned long data2,

void (* func)(void *, unsigned long),

struct thread **ret);

➜ Terminate thread

� thread exit()

➜ Yield CPU

� thread yield()

➜ Synchronisation:

� thread sleep(const void *addr)

� thread wakeup(const void *addr)

PROCESSES AND THREADS 9

Slide 19

PROCESSES AND THREADS

The OS stores information about Threads and Processes in

Thread Control Block (TCB) and Process Controll Block (PCB)

➜ PCBs stored in process table

➜ TCBs stored in thread table

Process Thread

Address Space ✔
Registers ✔
Program Counter ✔
Stack ✔
Open Files ✔
State ✔
Signals and Handlers ✔
Accounting Info ✔ ✔
Global Variables

PROCESSES AND THREADS 10

