
Breaking Security

COMP3231 Operating Systems
2004 S1

2COMP3231 04s1

Sources of Security Failures
• Lack of security awareness

– Users
• silly passwords
• mailing binaries
• telnet, etc…..

– System admins
• guest accounts
• default PATH “.:/bin:…”
• Making available problematic software (e.g telnet)
• Assuming users are intelligent and aware of security

– System designers
• No names ☺

3COMP3231 04s1

Sources of Security Failures

• Poor design
– Setuid

• Violates principle of least privilege
– Client side validation in client/server

systems
• Lazy Programmers

– Not testing boundary conditions, not
initialising storage, not testing input,
overflowing stack and buffers

4COMP3231 04s1

Source of Security Failures

• Featurism
– Too many features

• too many potential bugs
– Complexity

• Hard to predict interactions

5COMP3231 04s1

Exploiting Weaknesses
• Target typical failure sources

– Silly users
– Silly system admins
– Lazy programmers/designers

• Manual says “don’t do X” then do X
• Try unreasonable/null/invalid/borderline args
• Read newly allocated storage
• Kill when doing a privileged operation (e.g. during login)
• Attempt stack corruption
• Write your own client

– Featurism
• Try unexpected combinations of things

6COMP3231 04s1

Famous OS/360 Hack
• OS/360 supported asynchronous

reading from tape.
• Also had passwords on files

– Validation code
1. OS read file name
2. OS check password
3. OS re-reads file name
4. OS opens file

• An exploit???

7COMP3231 04s1

Famous OS/360 Hack

– Validation code
1. OS read file name
2. OS check password
3. OS re-reads file name
4. OS opens file

• Have asynchronous tape overwrite file
name between 1 & 3!!!!

– Race condition in single-tasking system
– A classic TOCTOU attack

• Time Of Checking Time Of Use

8COMP3231 04s1

Michigan Time Sharing
System

• Certain system calls used indirect addressing
for parameters (input and output)

syscall(in addr1ptr, out addr2ptr, out addr3ptr, out addr4ptr)

• Syscall parameters were validated by
checking whether addresses were valid user
address before processing the syscall.

• Exploit????

9COMP3231 04s1

Michigan Time Sharing
System

• Illustrative (fictitious) example
– copy(in addr1, in addr2, out addr3, out addr4)

• Copy from addr1 to addr3, add2 to addr4

Addr 1 Addr 2 Addr 4Addr 3 Kernel

10COMP3231 04s1

Michigan Time Sharing
System

– copy(in addr1, in addr2, out addr3, out
addr4)

Addr 1 Addr 2 Addr 4Addr 3 Kernel

11COMP3231 04s1

Michigan Time Sharing
System

– copy(in addr1, in addr2, out addr3, out
addr4)

Addr 1 Addr 2 Addr 4Addr 3 Kernel

12COMP3231 04s1

Michigan Time Sharing
System

Another TOCTOU attack

Addr 1 Addr 2 Addr 4Addr 3 Kernel

13COMP3231 04s1

Famous Multics Hack

• Multics was an interactive system with
excellent security

• Batch features added as an afterthought
• Batch jobs could read a card deck and

store it into a file anywhere in the file
system

• Exploit???

14COMP3231 04s1

Famous Multics Hack

• Batch jobs could read a card deck and
store it into a file anywhere in the file
system!!
– Write a program (card deck) to steal files

and call the standard system editor
– Call it “editor”
– Install it in the victims ~/bin

• Designer lazyness

15COMP3231 04s1

Famous Burroughs B6700
Hack

• The computer did not have a privileged
mode.

• The compiler (ALGOL) was strongly typed
and would not generate privileged code.
– No assembly code possible.

• Files were typed
• Only files marked as code files were

executable.
• Only the safe compiler could generate code

files.

16COMP3231 04s1

Famous Burroughs B6700
Hack

• User could backup and restore their
own files on tape.

• Users could read and write the tape
directly!!!

• Exploit???

17COMP3231 04s1

Famous Burroughs B6700
Hack

• Generate an assembly program to take
over the machine

• Back it up
• Change the program type on tape to

code file by overwriting the type field on
the tape appropriately

• Restore the file.
• Designer laziness

18COMP3231 04s1

The Famous TENEX Hack
• TENEX was OS for DEC-10, had paged VM

– Supported a page fault notification function (to
collect stats...)

• Had passwords on files
• Password checker:
int CheckPassword (char *given, char *passwd) {

int i;
for (i=0; i<14; i++) {

if (passwd[i] != given[i]) {
return EXIT_FAILURE;

}
}
return EXIT_SUCCESS;

}

19COMP3231 04s1

The Famous TENEX Hack
• Hack:

– Align password across page
boundary (after 1st char)

– Ensure second page is not
resident

– Try AAAAA, BAAAA,
CAAAA

– Page fault
• got first letter

– Repeat with page boundary
after 2nd char...

– Worst case 128ˆntests

• Interference of two
“harmless” features

20COMP3231 04s1

Ken Thompson’s Compiler
Hack

• CORE OF THE C COMPILER;
compile(char *s) {

...
}

– Reads pre-processed C source (string s)
and produces assembler output.

21COMP3231 04s1

HACKING THE C COMPILER
— STEP 1:

compile(char *s) {
if(match(s, "pattern")) {
compile("bug");
return;
}

...
}

• When processing specific code (say, login) compile
different code (e.g a trapdoor)

• Easy to spot by looking at the compiler source

22COMP3231 04s1

HACKING THE C COMPILER
— STEP 2:

compile(char *s) {
if(match(s, "pattern")) {

compile("bug");
return;

}
if(match(s, "pattern2")) {

compile("bug2");
return;

}
...

}

• “pattern2”: C compiler itself
• “bug2” : the C compiler with the above two if statements

23COMP3231 04s1

HACKING THE C COMPILER
— STEP 3:

• Compile and install the hacked compiler.
• Restore the original C compiler sources.
• Recompiling an unhacked source will still

produce a hacked executable

• Morale: “Don’t trust a C compiler you haven’t
hacked yourself!” [K. Thompson, Commun. of the ACM, 27,
Aug, 1984]

24COMP3231 04s1

Famous UNIX Hacks
• lpr –r /etc/passwd

– Programmer laziness
• ln /etc/passwd core

– run setuid program (at, login, ps) & SIGQUIT
– use command line args to put useful stuff into core

file
– Interference of “harmless” feature and setuid

• mkdir was program (setuid root)
– did mknod, chown
– on slow system while mkdir path:

• rm path; ln /etc/passwd path

– Interference between setuid and a race condition

25COMP3231 04s1

Sendmail

• SetUID root
• Big and complex

• The –C option could be used to check a config file
• If error, the offending file would be printed with

appropriate error message

• -C could be used to read any file on the
system
– sendmail –C/something/private

• SetUID is dangerous

26COMP3231 04s1

Windows Share Exploits

• Windows 95 had a feature that would attempt
to logon to a file server using various file
server protocols
– SMB
– LANMANAGER

• LANMANAGER used plain text passwords
• IE would automatically attempt to mount a

drive if you browsed a “share” URL
• Exploit?

27COMP3231 04s1

Windows Share Exploits

• Create a web page that references a
share on your “server”

• What for the client to mount your
LANMAN server using plaintext
password

• Example: Insecure Featurism

28COMP3231 04s1

Windows Share Exploits II

• Samba SMBCLIENT could mount win95
shares (without being authorised)

• Problem according to Microsoft
– “The Samba SMB client allows its users to send

illegal networking commands over the network. “
• Real problem

– Server was written assuming the behaviour of the
client!!!

29COMP3231 04s1

Windows Share Exploits III
• Windows 95/98/ME can export a share with a

password for authentication
• Problem:

– Server only checked the password up to the
length supplied by the client

• Client could send “a” and match “aardvark”
– A client program could easily extract the whole

password by trying
• “a-z” to get first letter, then “aa”, “ab”, …, “az” to get next

and so forth

• Real problem
– Stupid server writer

30COMP3231 04s1

Mobile Phone Featurism

• Send an SMS to some siemens mobile
phones
– Containing “%Language”

• Where language = English, Deutsch, etc.

• Phone Hangs
– DOS attack

31COMP3231 04s1

DLINK DSL 500
Modem/Router/Firewall

• SNMP access enabled by default on external
side of firewall

• Default community strings exist
– Act as passwords
– “public” give RO access
– “private” gives RW access

• Can use SNMP to fetch confidential info on
modem
– ISP account name and password

• Problem
– Stupid manufacturer defaults!!!!

32COMP3231 04s1

Personal Experiences as a
System Admin

33COMP3231 04s1

/etc/hosts.equiv

• Used to allow logins from trusted hosts
without having to supply a password
– Only matching login names required

• SUNOS 4.0 shipped with ‘+’ in
hosts.equiv
– Trust everybody
– Manufacturer carelessness

34COMP3231 04s1

Apollo Domain OS

• Shipped setUID-root csh
• Blatant manufacturer stupidity

35COMP3231 04s1

LD_LIBRARY_PATH

• Users can compile their own dynamic
libraries but can’t install libraries in the
system directory

• LD_LIBRARY_PATH allows the system
to find a user’s libraries
– LD_LIBRARY_PATH=“/home/kevine/lib:/usr/lib”

• Exploit???

36COMP3231 04s1

LD_LIBRARY_PATH

• Build your own libc that adds
exec(“/bin/sh”)

• Run a setUID dynamically linked binary
• Interference between “harmless”

features.

37COMP3231 04s1

xterm

• Xterm was setUID root in order to write utmp
entries
– Utmp recorded who was logged on

• Xterm has a logging feature that would
dump all terminal traffic to a log file.
– Code:

1. Access(“filename) /* check permissions */
2. Open(“filename”)

• Exploit???

38COMP3231 04s1

xterm

• Xterm has a logging feature that would
dump all terminal traffic to a log file.

– Code:
1. Access(“filename) /* check permissions */
2. Open(“filename”)

• Between 1 & 2, link the name
“filename” to the password file

– Type in an entry for uid 0

39COMP3231 04s1

The Internet Worm
• On 2 Nov. 1988 Robert Tappan Morris,

Cornell PG student, released a self-
replicating program affecting Sun 3 and VAX
computers running BSD.

• Program consisted of two parts:
– bootstrap code l1.c (99 lines):

• to run on affected host
• uploads worm

– worm:
• hides traces
• exits in 6/7 cases when host already infected
• attempts to spread

40COMP3231 04s1

WORM’S METHODS OF
ATTACK:

• Use rsh to infect trusted hosts
• /etc/hosts.equiv
• ˜user/.rhosts

• Exploit fingerd bug to get remote root shell:
• finger param@host
• param: 536B string containing Sun 3 and VAX code
• overflow fingerd’s argument bufffer
• overwrite stack
• exec("/bin/sh")

• Exploit sendmail bug
• allows mailing and executing bootstrap code

• Crack passwords
• ... using local on-line dictionary

41COMP3231 04s1

RESULTS
• Worm’s replication overloaded infected hosts

– 6/7 “safety margin” was far too low
• Spread world-wide within hours
• Created world-wide chaos on internet

– most Suns & VAXen down
• Huge cost of lost time world-wide
• Lead to institution of CERT

– Computer Emergency Response Team
• Morris convicted & sentenced

– US$10k fine
– 400h community service
– 3 years probation
– estimated >US$150k in legal costs

42COMP3231 04s1

What is YOUR Responsibility?
• EXAMPLE: IEEE CODE OF ETHICS

– http://www.ieee.org/about/whatis/code.html

• We, the members of the IEEE, ..., do hereby commit ourselves
to the highest ethical and professional conduct and agree:

1. to accept responsibility in making engineering decisions
consistent with the safety, health and welfare of the public,
and to disclose promptly factors that might endanger the
public or the environment;

9. to avoid injuring others, their property, reputation, or
employment by false or malicious action;

43COMP3231 04s1

NSW Crimes Act
SECTIONS DEALING WITH COMPUTER CRIME

309. Unlawful access to a computer
1. A person who, without authority or lawful excuse,

intentionally obtains access to a program or data stored in
a computer is liable, on conviction before two justices, to
imprisonment for 6 months, or to a fine of $5,000, or both.

2. A person who, with intent:
1. to defraud any person; or
2. to obtain for himself or herself or another person any financial

advantage of any kind; or
3. to cause loss or injury to any person

obtains access to a program or data stored in a computer
is liable to imprisonment for 2 years, or to a fine of
$50,000, or both.

44COMP3231 04s1

3. A person who, without authority or lawful excuse,
intentionally obtains access to a program or data stored in a
computer, being a program or data that the person knows or
ought reasonably to know relates to:

a. a. confidential government information in relation to security, defence
or inter-governmental relations; or

b. b. the existence or identity of any confidential source of information in
relation or the enforcement or administration of the law; or

c. c. the enforcement or administration of the criminal law; ore
d. d. the maintenance or enforcement of any lawful method or procedure

for protecting public safety; or
e. e. the personal affairs of any person (whether living or deceased); or
f. f. trade secrets; or
g. g. records of a financial institution; or
h. h. information (other than trade secrets) that has a commercial value to

any person that could be destroyed or diminished if disclosed,
is liable to imprisonment for 2 years, or to a fine of $50,000,
or both.

45COMP3231 04s1

4. A person who:
a. without authority or lawful excuse, has

intentionally obtained access to a program or
data stored in a computer; and

b. after examining part of that program or data,
knows or ought reasonably to know that the part
of the program or data examined relates wholly
or partly to any of the matters referred to in
subsection (3); and

c. continues to examine that program or data,
is liable to imprisonment for 2 years, or to a fine

of $50,000, or both.

46COMP3231 04s1

310. Damaging data in
computer

A person who intentionally and without
authority or lawful excuse:

a. destroys, erases or alters data stored in
or inserts data into a computer; or

b. interferes with, or interrupts or obstructs
the lawful use of a computer,

is liable to penal servitude for 10 years, or
to a fine of $100,000, or both.

47COMP3231 04s1

The aim of this lecture

• Make you aware of security related issues
– Learn from the mistake of others

• Make you aware of your responsibilities as
soon-to-be professionals

• Encourage you to educate yourself
– On your own equipment

• Warn you that the school has zero tolerance
of breaching local system security
– http://www.cse.unsw.edu.au/school/facilities/yellowform.html

