
1COMP3231 04s1

Virtual Memory II

2COMP3231 04s1

TLB Recap

• Fast associative cache of page table
entries
– Contains a subset of the page table
– What happens if required entry for translation

is not present (a TLB miss)?

3COMP3231 04s1

TLB Recap

• TLB may or may not be under OS control
– Hardware-loaded TLB

• On miss, hardware performs PT lookup and
reloads TLB

• Example: Pentium

– Software-loaded TLB
• On miss, hardware generates a TLB miss

exception, and exception handler reloads TLB
• Example: MIPS

4COMP3231 04s1

R3000 TLB
Handling

• TLB refill is handled by
software
– An exception handler

• TLB refill exceptions
accessing kuseg are
expected to be frequent
– CPU optimised for handling

kuseg TLB refills by having
a special exception handler
just for TLB refills

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

5COMP3231 04s1

Exception Vectors

Special exception
vector for kuseg

TLB refills

6COMP3231 04s1

Special Exception Vector

• Can be optimised for TLB
refill only
– Does not need to check the

exception type
– Does not need to save any

registers
• It uses a specialised

assembly routine that only
uses k0 and k1.

– Does not check if PTE
exists

• Assumes virtual linear
array

• An example routine
mfc0 k1,C0_CONTEXT
mfc0 k0,C0_EPC # mfc0 delay

slot
lw k1,0(k1) # may double

fault (k0 = orig EPC)
nop
mtc0 k1,C0_ENTRYLO
nop
tlbwr
jr k0
rfe

7COMP3231 04s1

MIPS VM Related Exceptions
• TLB refill

– Handled via special exception vector
– Needs to be very fast

• Others handled by the general exception vector
– TLB Mod

• TLB modify exception, attempt to write to a read-only page
– TLB Load

• Attempt it load from a page with an invalid translation
– TLB Store

• Attempt to store to a page with an invalid translation
– Note: these can be slower as they are mostly either caused by

an error, or non-resident page.
• We never optimise for errors, and page-loads from disk dominate

the fault resolution cost.

8COMP3231 04s1

c0 Registers

• c0_EPC
– The address of where to restart after the exception

• c0_status
– Kernel/User Mode bits, Interrupt control

• c0_cause
– What caused the exception

• c0_badvaddr
– The address of the fault

9COMP3231 04s1

The TLB and EntryHi,EntryLo

EntryHi
EntryLo

EntryHi EntryLo
EntryHi EntryLo
EntryHi EntryLo
EntryHi EntryLo
EntryHi EntryLo
EntryHi EntryLo
EntryHi EntryLo
EntryHi EntryLo

Each TLB entry
contains

• EntryHi to match
page# and ASID

•EntryLo which
contains frame#
and protection

TLB

c0 Registers

Used to read
and write
individual TLB
entries

10COMP3231 04s1

c0 Registers

• N = Not cacheable
• D = Dirty = Write protect
• G = Global (ignore ASID

in lookup)

• V = valid bit
• 64 TLB entries
• Accessed via software through

Cooprocessor 0 registers
– EntryHi and EntryLo

11COMP3231 04s1

c0 Index Register

• Used as an index to TLB entries
– Single TLB entries are manipulated/viewed through

EntryHi and EntryLo0
– Index register specifies which TLB entry to

change/view

12COMP3231 04s1

Special TLB management
Instructions

• TLBR
– TLB read

• EntryHi and EntryLo are loaded from the entry pointer to by the
index register.

• TLBP
– TLB probe
– Set EntryHi to the entry you wish to match, index register is

loaded with the index to the matching entry

• TLBWR
– Write EntryHi and EntryLo to a psuedo-random location in the

TLB

• TLBWI
– Write EntryHi and EntryLo to the location in the TLB pointed to

by the Index register.

13COMP3231 04s1

c0 Context Register

• c0_Context = PTEBase + 4 * PageNumber
– PTEs are 4 bytes
– PTEBase is the base local of the page table array (note: aligned

on 4 MB boundary)
– PTEBase is (re)initialised by the OS whenever the page table

array is changed
• E.g on a context switch

– After an exception, c0_Context contains the address of the PTE
required to refill the TLB.

14COMP3231 04s1

Cooprocessor 0 registers on a
refill exception

c0.EPC ← PC
c0.cause.ExcCode ← TLBL ; if read fault
c0.cause.ExcCode ← TLBS ; if write fault
c0.BadVaddr ← faulting address
c0.EntryHi.VPN ← faulting address

c0.Context.VPN ← faulting address
c0.status ← kernel mode, interrupts disabled.
c0.PC ← 0x8000 0000

15COMP3231 04s1

Outline of TLB miss handling

• Software does:
– Look up PTE corresponding to the faulting address
– If found:

• load c0_EntryLo with translation
• load TLB using TLBWR instructions
• return from exception

– Else, page fault

• The TLB entry (i.e. c0_EntryLo) can be:
– created on the fly, or
– stored completely in the right format in page table

16COMP3231 04s1

Virtual Linear Array Page Table

PTEbase in virtual
memory in kseg2
• Protected from
user access

• Use Context register to simply
load PTE by indexing a PTE
array in virtual memory

• Occasionally, will get double
faults
– A TLB miss, while servicing a TLB

miss
– Handled by general exception

handler

17COMP3231 04s1

Code for VLA TLB refill handler
mfc0 k1,C0_CONTEXT
mfc0 k0,C0_EPC # mfc0 delay slot
lw k1,0(k1) # may double fault

(k0 = orig EPC)
nop
mtc0 k1,C0_ENTRYLO
nop
tlbwr
jr k0
rfe

Load PTE
address from
context register

Load the PTE.
Note: this load can cause a
TLB refill miss itself, but
this miss is handled by the
general exception vector.
The general exception
vector has to understand
this situation and deal with
in appropriately

Move the PTE
into EntryLo.

Write EntryLo
into random
TLB entry. Return from the

exception

Load address of
instruction to
return to

18COMP3231 04s1

OS/161 Refill Handler

• After switch to kernel stack, it simply calls the common
exception handler
– Stacks all registers
– Can (and does) call ‘C’ code
– Unoptimised
– Goal is ease of kernel programming, not efficiency

• Does not have a page table
– It uses the 64 TLB entries and then panics when it runs out.

• Only support 256K user-level address space

19COMP3231 04s1

Demand Paging/Segmentation

• With VM, only parts of the program image need to be
resident in memory for execution.

• Can swap presently unused pages/segments to disk
• Reload non-resident pages/segment on demand.

– Reload is triggered by a page or segment fault
– Faulting process is blocked and another scheduled
– When page/segment is resident, faulting process is restarted
– May require freeing up memory first

• Replace current resident page/segment
• How determine replacement “victim”?

– If victim is unmodified (“clean”) can simply discard it
• This is reason for maintaining a “dirty” bit in the PT

20COMP3231 04s1

• Why does demand paging/segmentation work?
– Program executes at full speed only when accessing

the resident set.
– TLB misses introduce delays of several microseconds
– Page/segment faults introduce delays of several

milliseconds
– Why do it?

• Answer
– Less physical memory required per process

• Can fit more processes in memory
• Improved chance of finding a runnable one

– Principle of locality

21COMP3231 04s1

Principle of Locality

• An important observation comes from empirical
studies of the properties of programs.
– Programs tend to reuse data and instructions they

have used recently.
– 90/10 rule

"A program spends 90% of its time in 10% of its code"
• We can exploit this locality of references
• An implication of locality is that we can

reasonably predict what instructions and data a
program will use in the near future based on its
accesses in the recent past.

22COMP3231 04s1

• Two different types of locality have been
observed:
– Temporal locality: states that recently accessed items

are likely to be accessed in the near future.
– Spatial locality: says that items whose addresses are

near one another tend to be referenced close
together in time.

23COMP3231 04s1

Locality In A Memory-Reference Pattern

24COMP3231 04s1

Working Set
• The pages/segments required by an application in a time

window (∆)is called its memory working set.
• Working set is an approximation of a programs’ locality

– if ∆ too small will not encompass entire locality.
– if ∆ too large will encompass several localities.
– if ∆ = ∞ ⇒ will encompass entire program.
– ∆’s size is an application specific tradeoff

• System should keep resident at least a process’s
working set
– Process executes while it remains in its working set

• Working set tends to change gradually
• Get only a few page/segment faults during a time window
• Possible to make intelligent guesses about which pieces will be

needed in the future
– May be able to pre-fetch page/segments

25COMP3231 04s1

Working Set Model

?

26COMP3231 04s1

Thrashing
• CPU utilisation tends to increase with the degree of

multiprogramming
– number of processes in system

• Higher degrees of multiprogramming – less memory
available per process

• Some process’s working sets may no longer fit in RAM
– Implies an increasing page fault rate

• Eventually many processes have insufficient memory
– Can’t always find a runnable process
– Decreasing CPU utilisation
– System become I/O limited

• This is called thrashing.

27COMP3231 04s1

Thrashing

• Why does thrashing occur?
Σ working set sizes > total physical memory size

28COMP3231 04s1

Recovery From Thrashing

• In the presence of increasing page fault
frequency and decreasing CPU utilisation
– Suspend a few processes to reduce degree of

multiprogramming
– Resident pages of suspended processes will migrate

to backing store
– More physical memory becomes available

• Less faults, faster progress for runnable processes

– Resume suspended processes later when memory
pressure eases

29COMP3231 04s1

What is the difference?
/* reset array */
int array[10000][10000];
int i,j;
for (i = 0; i < 10000; i++) {

for (j = 0; j < 10000;j ++) {
array[i][j] = 0;
/* array[j][i] = 0 */

}
}

Array[a][b]

b

a

30COMP3231 04s1

VM Management Policies
• Operation and performance of VM system is

dependent on a number of policies:
– Page table format (my be dictated by hardware)

• Multi-level
• Hashed

– Page size (may be dictated by hardware)
– Fetch Policy
– Replacement policy
– Resident set size

• Minimum allocation
• Local versus global allocation

– Page cleaning policy
– Degree of multiprogramming

31COMP3231 04s1

Page Size
Increasing page size
O Increases internal fragmentation

§ reduces adaptability to working set size

ü Decreases number of pages
§ Reduces size of page tables

ü Increases TLB coverage
§ Reduces number of TLB misses

O Increases page fault latency
§ Need to read more from disk before restarting process

ü Increases swapping I/O throughput
§ Small I/O are dominated by seek/rotation delays

§ Optimal page size is a (work-load dependent) trade-off.

32COMP3231 04s1

512 bytesDEC VAX

8K - 4M bytes in powers of 8DEC Alpha

4K and 64K bytesARM

4K and 4M bytesIntel Pentium

4k – 16M bytes in powers of 4MIPS R4000

8K – 4M bytes in powers of 8UltraSPARC

4K bytes + “blocks”PowerPC

4K – 256M bytes in powers of 4Intel IA-64

512 bytesIBM AS/400

4K bytesIBM 370/XA

1K words (36-bit)Honeywell/Multics

512 words (48-bit)Atlas

33COMP3231 04s1

Page Size

• Multiple page sizes provide flexibility to
optimise the use of the TLB

• Example:
– Large page sizes can be use for code
– Small page size for thread stacks

• Most operating systems support only a
single page size
– Dealing with multiple page sizes is hard!

34COMP3231 04s1

Fetch Policy
• Determines when a page should be brought into

memory
– Demand paging only loads pages in response to page

faults
• Many page faults when a process first starts

– Pre-paging brings in more pages than needed at the
moment

• Improves I/O performance by reading in larger chunks
• Pre-fetch when disk is idle
• Wastes I/O bandwidth if pre-fetched pages aren’t used
• Especially bad if we eject pages in working set in order to

pre-fetch unused pages.
• Hard to get right in practice.

35COMP3231 04s1

7
6
5
4
3
2
1
0

Physical
Address Space

7
6
5

3

1
0

15
14
13
12
11
10
9
8

14

10

4

2

Disk

Virtual

Memory

Page fault on
page 14, physical

memory full,
which page

should we evict?

Replacement
Policy

36COMP3231 04s1

Replacement Policy

• Which page is chosen to be tossed out?
– Page removed should be the page least likely to be

references in the near future
– Most policies attempt to predict the future behaviour

on the basis of past behaviour
• Constraint: locked frames

– Kernel code
– Main kernel data structure
– I/O buffers
– Performance-critical user-pages (e.g. for DBMS)

• Frame table has a lock bit

37COMP3231 04s1

Optimal Replacement policy

• Toss the page that won’t be used for the longest
time

• Impossible to implement
• Only good as a theoretic reference point:

– The closer a practical algorithm gets to optimal, the
better

• Example:
– Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
– Four frames
– How many page faults?

38COMP3231 04s1

FIFO Replacement Policy

• First-in, first-out: Toss the oldest page
– Easy to implement
– Age of a page is isn’t necessarily related to

usage
• Example:

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
– Four frames
– How many page faults?
– Three frames?

39COMP3231 04s1

Belady’s Anomaly

• More frames does not imply fewer page
faults

40COMP3231 04s1

Least Recently Used (LRU)

• Toss the least recently used page
– Assumes that page that has not been referenced for a

long time is unlikely to be referenced in the near
future

– Will work if locality holds
– Implementation requires a time stamp to be kept for

each page, updated on every reference
– Impossible to implement efficiently
– Most practical algorithms are approximations of LRU

41COMP3231 04s1

Clock Page Replacement

• Clock policy, also called second chance
– Employs a usage or reference bit in the frame

table.
– Set to one when page is used
– While scanning for a victim, reset all the

reference bits
– Toss the first page with a zero reference bit.

Assume a page
fault on page 727

44COMP3231 04s1

Issue

• How do we know when a page is referenced?
• Use the valid bit in the PTE:

– When a page is mapped (valid bit set), set the
reference bit

– When resetting the reference bit, invalidate the PTE
entry

– On page fault
• Turn on valid bit in PTE
• Turn on reference bit

• We thus simulate a reference bit in software

45COMP3231 04s1

Performance

• It terms of selecting the most appropriate
replacement, they rank as follows

1. Optimal
2. LRU
3. Clock
4. FIFO

– Note there are other algorithms (Working Set,
WSclock, Ageing, NFU, NRU)

– We don’t expect you to know them in this course

46COMP3231 04s1

Resident Set Size

• How many frames should each process have?
– Fixed Allocation

• Gives a process a fixed number of pages within which to
execute.

• When a page fault occurs, one of the pages of that process
must be replaced.

• Achieving high utilisation is an issue.
– Some processes have high fault rate while others don’t use

their allocation.

– Variable Allocation
• Number of pages allocated to a process varies over the

lifetime of the process

47COMP3231 04s1

• Variable Allocation, Global Scope
– Easiest to implement
– Adopted by many operating systems
– Operating system keeps global list of free frames
– Free frame is added to resident set of process when a

page fault occurs
– If no free frame, replaces one from any process

48COMP3231 04s1

Variable Allocation, Local Scope
• Allocate number of page frames to a new process based

on
– Application type
– Program request
– Other criteria (priority)

• When a page fault occurs, select a page from among the
resident set of the process that suffers the page fault

• Re-evaluate allocation from time to time!

49COMP3231 04s1

Page-Fault Frequency Scheme

• Establish “acceptable” page-fault rate.
– If actual rate too low, process loses frame.
– If actual rate too high, process gains frame.

50COMP3231 04s1

Cleaning Policy
• Observation

– Clean pages are much cheaper to replace than dirty pages

• Demand cleaning
– A page is written out only when it has been selected for

replacement
– High latency between the decision to replace and availability of

free frame.

• Precleaning
– Pages are written out in batches (in the background, the

pagedaemon)
– Increases likelihood of replacing clean frames
– Overlap I/O with current activity

51COMP3231 04s1

Load Control (Degree of
multiprogramming)

• Determines the number of runnable processes
• Controlled by:

– Admission control
• Only let new process’s threads enter ready state if enough memory

is available

– Suspension:
• Move all threads of some process into a special suspended state
• Swap complete process image of suspended process to disk

• Trade-off
– Too many processes will lead to thrashing
– Too few will lead to to idle CPU or excessive swapping

52COMP3231 04s1

Load Control Considerations

• Can use page fault frequency.

