Virtual Memory

_ THE UNIVERSITY OF COMP3231 04s1
c g NEW SOUTH WALES

* Virtual Memory

Virtual Address
Space

Paging

* Physical Memory
— Divided into
equal-sized
frames

Divided into equal-
sized pages
A mapping is a
translation between

* A page and a frame

* A page and null
Mappings defined at
runtime

* They can change

Address space can
have holes

Process does not
have to be
contiguous in
memory

Physical
Address Space 2

O - NWPALOI O

Virtual Address

P
Kernel /
Stack /

Shared
Libraries

Cod

m= miRyilE NIVERSIT

dace

—
e
F
-

B "_'_--.,_-;:5.: NEW SOUTH WA L E S

gg | ypical Address

Space Layout

Stack region is at top,
and can grow down

 Heap has free space to
grow up

* Textis typically read-only

« Kernel is in a reserved,
protected, shared region

* 0-th page typically not
used, why?

MP3231 04s1 3

* A process may 12
be only partially 11
resident

s

What happens if
we access non-
resident
memory?

Virtual Address

Space -

14
13

— Allows OS to
swap individual
pages to disk

— Saves memory

for infrequently
used data & code

Programmer’s perspective:

logically present
System’s perspective: Not
mapped, data on disk

S

14 6

Disk

Physical

Address Space 4

Page Faults

« Referencing an invalid page triggers a page fault
* An exception handled by the OS

« Broadly, two standard page fault types
— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
* Get an empty frame
» Load page from disk

» Update page (translation) table (enter frame #, set valid bit, etc.)
» Restart the faulting instruction

* Note: Some implementations store disk block numbers

of non-resident pages in the page table (with valid bit
Unset)

TN THE UNIVERSITY OF COMP3231 04s1
gl NEW SOUTH WALES

Proc 1 Address Proc 2 Address

Space | ! Space
" [15] | 15 P
Currently - ! . 14
running ——___ ! i
13 | 13
(121 Physical 12
' | Address Spage
! 11
! 10 15
! 9 14] [14
' I
I
| (75 15| |1
i 5 Disk
| 4
| 3
2
I
EOMP3231 04s1 1 6
: 0

Virtual Address
Space

« Page table for 12
resident part of 11
address space

]

s

g
b2
b2

s

s

s

g
b

s

s

s

g
%

s

s

S

=

s

s

s

=

s

s

b2
b2
Ty

Fm

i

L
o

b2
b2
o

ettt
:#a####?

b2
b

£
g
i At
S

2
-
b
ehetetetibebeteeittel

T

—

Page
Table

Physical

O - NWPLLOI O

Address Space

W

 Private code and data

Shared Pages

— Each process has own
copy of code and data

— Code and data can
appear anywhere in
the address space

SEL THE UNIVERSITY OF
B NEW SOUTH WALES

COMP3231 04s1

« Shared code

— Single copy of code
shared between all
processes executing it

— Code must be “pure”
(re-entrant), i.e. not
self modifying

— Code must appear at
same address in all
processes

Proc 1 Address

Space =
14
2 13
12
11
10
9
8
Two (or more) |-
processes %)
running the 5
1 and sharing
7 the text section
2 Page
- Table

Physical
Address Spade

n COMP3231 04s1

15

14

13

12

10

Proc 2 Address
Space

Page

Table o

N

Page Table Structure

« Page table is (logically) an array of
frame numbers

— Index by page number

« Each page-table entry (PTE) also has
other bits

Caching
disabled Modified Present/absent

[/ /

%//% | | | Page frame number

N\

Referenced Protection

Page

A ke o COMP3231 04s1 Table 10

B NEW SOUTH WALES

N

PTE bits

Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page

Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

Reference bit
— Indicates the page has been accessed

Protection bits

— Read permission, Write permission, Execute permission
— Or combinations of the above

Caching bit

— Use to indicate processor should bypass the cache when
accessing memory

 Example: to access device registers or memory

COMP3231 04s1 11

Address Translation

* Every (virtual) memory address issued by
the CPU must be translated to physical
memory

— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

.-_ =A . E UNIVERSITY OF COMP3231 04s1 12

II. NEW SOUTH WALES

Virtual Address

Page #

Offset

Frame # Offset
F 3

Reglster

FPage Table Pir

Page Table

i
o |2

SEEEE, S | Frame #

Paging Mechanism

i N - - O O O O O O O O O O O -
e
| - . . O . O O O O O O R O O O O . O e -

Figure 8.3 Address Translation in a Paging System

Frame

Dﬂset‘ } PﬂgE

O

Main Memory

Page Tables

 Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large

— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?

THE UNIVERSITY OF COMP3231 04s1
Gl NEW SOUTH WALES

14

Page Tables

* Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— e.g., 0.1 -1 MB text, 0.1 — 10 MB data, 0.1 MB stack

 We need a compact representation that does not waste
Space
— But is still very fast to search
« Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables

= THE UNIVERSITY OF COMP3231 04s1 15
@8S NEW SOUTH WALES

oeCorna-ievel

page tables
Two-level Page 1
T | Page
Table e $00
1, | 4Mof
e 2Md _|avel I memory
page tables liabii) ’
representing 1023 1
unmapped 6** T
pages are not ™o, Ene
3 I
allocated - : Ene
— Null in the ; - =i
top-level
page table };
1,
5 ——
4 o
3 1, To
o 1, Pages
1 >
0 ~—

8L THE UNIVERSITY OF
S NEW SOUTH WALES

Two-level Translation

l

Frame # (Offset

Virtual Address

100 bits | 10 bits | 12 hits

oot gz
table pir

Page
Frame

4-kbyle page
Root page table table (contains
: 0124 PTESs)
(contains 1024 PTEs) 1024 PTEs)

N

Program Paging Mechanism Main Memory

Alternative: Inverted Page Table

Virtual Address
Page # | Offset

Page Table
Page # Entry Chain
—>»
(hash)
f—
Frame #
— »
)
Frame # Offset
Hash Table Inverted Page Table Real Address
IHE UNIVERDITY UK UUIVIF L0 | U4D | 1o

NEW SOUTH WALES

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

* Algorithm
— Compute hash of page number
— Use this to index hash anchor table (HAT)
— HAT contains candidate frame number
— Use this to index into frame table
— Match the page number in the FT entry
— If match, use the frame # for translation

— If no match, get next candidate frame number from
chain field

— If NULL chain entry = page fault

THE UNIVERSITY OF COMP3231 04s1 19
E%s NEW SOUTH WALES

Properties of IPTs

* IPT grows with size of RAM, NOT virtual
address space

* Frame table is needed anyway (for page
replacement, more later)

* Need a separate data structure for non-
resident pages

* Saves a vast amount of space (especially
on 64-bit systems)

 Used in some IBM and HP workstations

-m- THE UNIVERSITY OF COMP3231 04s1 20
LS| NEW SOUTH WALES

Alternative: Virtual Linear Array
page table

* Assume a 2-level PT
« Assume 2"d-level PT nodes are in virtual memory

« Assume all 2"9-level nodes are allocated contiguously =
2nd-level nodes form a contiguous array indexed by page

number
H

4-kbyte root
page table

4-Gbyte virtual address space

4-Mbyte page table

THE UNIVERSITY OF COMP3231 04s1 21
NEW SOUTH WALES

Virtual Linear Array Operation

4-kbyte root
page table

4-Gbyte virtual address space

4-Mbyte page table

Index into 2nd level page table without referring to root
PT!

Simply use the full page number as the PT index!
Leave unused parts of PT unmapped!

If access is attempted to unmapped part of PT, a
secondary page fault is triggered

— This will load the mapping for the PT from the root PT

— Root PT is kept in physical memory (cannot trigger page faults)

COMP3231 04s1 22

VM Implementation Issue

 Problem:

— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
* One to fetch/store the data
—lntolerable performance impact!!

« Solution:
— High-speed cache for page table entries (PTES)

 Called a translation look-aside buffer (TLB)

« Contains recently used page table entries

» Associative, high-speed memory, similar to cache memory
* May be under OS control (unlike memory cache)

THE UNIVERSITY OF COMP3231 04s1 23
S8l NEW SOUTH WALES

TLB operation

) Secondary
Main Memory Memory

) ")

Virtual Address

Page # | Offset

Translation
Lookaside Buffer

—
» - .
I'LE hit I
P Oifsel
M o
SE—
Lol
page

Page Table

TLEB miss u/\

>

¥ b
Frame # Offset

Real Address \/\

Pape fault

Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

 If matching PTE found (TLB hit), the address is
translated

* Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
 If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

THE UNIVERSITY OF COMP3231 04s1 25
E%s NEW SOUTH WALES

TLB properties

« Page table is (logically) an array of frame
numbers

« TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame #F [V [W

26

TLB properties

« TLB may or may not be under OS control
— Hardware-loaded TLB

* On miss, hardware performs PT lookup and reloads TLB
« Example: Pentium

— Software-loaded TLB

* On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS
* TLB size: typically 64-128 entries

« Can have separate TLBs for instruction fetch
and data access

« TLBs can also be used with inverted page tables
(and others)

g - THE UNIVERSITY OF COMP3231 04s1 27

TLB and context switching
 TLB is a shared piece of hardware
« Page tables are per-process (address space)

* TLB entries are process-specific

— On context switch need to flush the TLB (invalidate
all entries)

* high context-switching overhead (ix86)

— or tag entries with address-space ID (ASID)
 called a tagged TLB
 used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect
bits

THE UNIVERSITY OF COMP3231 04s1 28
E%s NEW SOUTH WALES

TLB effect

« Without TLB

— Average number of physical memory
references per virtual reference
=2

* With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99"1+0.01*2
=1.01

,-_ =A . E UNIVERSITY OF COMP3231 04s1

II. NEW SOUTH WALES

29

Simplified Components of VM
Virtual Address SySte m Page Tables for 3

S 3 esses rocesses
paces (3 proc) / P Frame Table

J B
E |

CPU

TLB

Frame Pool

Physical Memory

TN THE UNIVERSITY OF COMP3231 04s1 30
B NEW SOUTH WALES

31

MIPS R3000 TLB

-

i h f
VPN ASID (l
EntryHi Register (TLE key fields)
31 12 11 10 4 g F) [
FEN [\ [\ G 0
Entrylo Register (TLE data fields)
« N = Not cacheable V =valid bit

* D = Dirty = Write protect

* G = Global (ignore ASID
in lookup)

e 64 TLB entries

« Accessed via software through
Cooprocessor 0 registers

— EntryHi and EntryLo

= THE UNIVERSITY OF COMP3231 04s1 31

gy NEW SOUTH WALES

OXFFFFFFFF

R3000 Address
Space Layout

0OxC000000
* Kkuseq:
— 2 gigabytes OxA0000000
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode 0x80000000
accessible

— Page size is 4K

T THE UNIVERSITY OF COMP3231 04s1

| NEW SOUTH WALES 0Ox00000000

kuseg

OXFFFFFFFF

R3000 Address
SpaCe LayOUt OxC000000

— Switching processes
switches the translation OxA0000000
(page table) for kuseg

0x80000000

Proc 1 Proc 2 Proc 3
Kuseg Kuseg Kuseg

04s1

0x00000000

R3000 Address
Space Layout

» ksegO:
— 512 megabytes

— Fixed translation window to

physical memory

« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
— Cacheable

— Only kernel-mode accessible
— Usually where the kernel code is

placed

WL THE UNIVERSITY OF
| NEW SOUTH WALES

Physical Memory

Oxffffffff

0xC0000000

0xA0000000

0x80000000

1
0x00000000

kuseg

R3000 Address
Space Layout

kseg1:
— 512 megabytes

— Fixed translation window to
physical memory

« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

* TLB not used
— NOT cacheable
— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)

TN THE UNIVERSITY OF Physical Memory
Bl NEW SOUTH WALES

Oxffffffff

0xC0000000

0xA00000

0x800Q0000

1
0x00000000

kuseg

R3000 Address
Space Layout

* ksegZ:
— 1024 megabytes
— TLB translated (mapped)
— Cacheable
* Depending on the ‘N’-bit
— Only kernel-mode accessible

— Can be used to store the virtual
linear array page table

T THE UNIVERSITY OF COMP3231 04s1

B NEW SOUTH WALES

Oxffffffff

0xC0000000

0xA0000000

0x80000000

0x00000000

kuseg

