
1

1COMP3231 03s1

Concurrency and
Synchronisation

2COMP3231 03s1

Textbook

• Sections 2.3 & 2.4

3COMP3231 03s1

Making Single-Threaded Code Multithreaded

Conflicts between threads over the use of a
global variable 4COMP3231 03s1

Inter- Thread and Process
Communication

Two processes want to access shared memory at same
time

We have a
race

condition

5COMP3231 03s1

Critical Region
• We can control access to the shared

resource by controlling access to the code
that accesses the resource.

⇒ A critical region is a region of code where
shared resources are accessed.
– Variables, memory, files, etc…

• Uncoordinated entry to the critical region
results in a race condition
⇒ Incorrect behaviour, deadlock, lost work,…

6COMP3231 03s1

Critical Regions

Mutual exclusion using critical regions

2

7COMP3231 03s1

Critical Regions
Also called critical sections

Conditions required of any solution to the critical
region problem
Mutual Exclusion:

No two processes simultaneously in critical region
No assumptions made about speeds or numbers of
CPUs
Progress

No process running outside its critical region may block
another process

Bounded
No process must wait forever to enter its critical region

8COMP3231 03s1

A non-solution

• A lock variable
– If lock == 1,

• somebody is in the critical section and we must
wait

– If lock == 0,
• nobody is in the critical section and we are free to

enter

9COMP3231 03s1

A non-solution
while(TRUE) {

while(lock == 1);
lock = 1;
critical();
lock = 0
non_critical();

}

while(TRUE) {
while(lock == 1);
lock = 1;
critical();
lock = 0
non_critical();

}

10COMP3231 03s1

A problematic execution
sequence

while(TRUE) {

while(lock == 1);
lock = 1;

critical();
lock = 0
non_critical();

}

while(TRUE) {
while(lock == 1);

lock = 1;
critical();

lock = 0
non_critical();

}

11COMP3231 03s1

Observation

• Unfortunately, it is usually easier to show
something does not work, than it is to
prove that it does work.
– Ideally, we’d like to prove, or at least

informally demonstrate, that our solutions
work.

12COMP3231 03s1

Mutual Exclusion by Taking Turns

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

3

13COMP3231 03s1

Mutual Exclusion by Taking Turns

• Works due to strict alternation
– Each process takes turns

• Cons
– Busy waiting
– Process must wait its turn even while the other

process is doing something else.
• With many processes, must wait for everyone to have a turn

– Does not guarantee progress if a process no longer needs a
turn.

• Poor solution when processes require the critical section at
differing rates

14COMP3231 03s1

Peterson’s Solution

• See the textbook

15COMP3231 03s1

Mutual Exclusion by Disabling
Interrupts

• Before entering a critical region, disable
interrupts

• After leaving the critical region, enable interrupts
• Pros

– simple
• Cons

– Only available in the kernel
– Blocks everybody else, even with no contention

• Slows interrupt response time
– Does not work on a multiprocessor

16COMP3231 03s1

Hardware Support for mutual
exclusion

• Test and set instruction
– Can be used to implement lock variables correctly

• It loads the value of the lock
• If lock == 0,

– set the lock to 1
– return the result 0

• If lock == 1
– return 1

– Hardware guarantees that the instruction executes
atomically.

• Atomically: As an indivisible unit.

17COMP3231 03s1

Mutual Exclusion with Test-and-Set

Entering and leaving a critical region using the
TSL instruction

18COMP3231 03s1

Test-and-Set
• Pros

– Simple (easy to show it’s correct)
– Available at user-level

• To any number of processors
• To implement any number of lock variables

• Cons
– Busy waits (also termed a spin lock)

• Consumes CPU
• Deadlock in the presence of priorities

– If a low priority process has the low and a high priority process
attempts to get it, the high priority process will busy-wait
forever.

• Starvation is possible when a process leaves its critical
section and more than one process is waiting.

4

19COMP3231 03s1

Tackling the Busy-Wait Problem

• Sleep / Wakeup
– The idea

• When process is waiting for an event, it calls sleep
to block, instead of busy waiting.

• The the event happens, the event generator
(another process) calls wakeup to unblock the
sleeping process.

20COMP3231 03s1

The Producer-Consumer
Problem

• Also called the bounded buffer problem
• A producer produces data items and stores the

items in a buffer
• A consumer takes the items out of the buffer and

consumes them.

X X X

Producer

Consumer

21COMP3231 03s1

Issues
• We must keep an accurate count of items in

buffer
– Producer

• can sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

– The consumer can call wakeup when it consumes the first entry
of the full buffer

– Consumer
• Can sleep when the buffer is empty
• And wake up when there are items available

– Producer can call wakeup when it adds the first item to the
buffer

22COMP3231 03s1

Pseudo-code for producer and
consumer

int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
if (count == N)

sleep();
insert_item();
count++;
if (count == 1)

wakeup(con);
}

}

con() {
while(TRUE) {

if (count == 0)
sleep();

remove_item();
count--;
if (count == N-1)

wakeup(prod);
}

}

23COMP3231 03s1

Problems
int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
if (count == N)

sleep();
insert_item();
count++;
if (count == 1)

wakeup(con);
}

}

con() {
while(TRUE) {

if (count == 0)
sleep();

remove_item();
count--;
if (count == N-1)

wakeup(prod);
}

} Concurrent
uncontrolled
access to the

buffer

24COMP3231 03s1

Problems
int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
if (count == N)

sleep();
insert_item();
count++;
if (count == 1)

wakeup(con);
}

}

con() {
while(TRUE) {

if (count == 0)
sleep();

remove_item();
count--;
if (count == N-1)

wakeup(prod);
}

} Concurrent
uncontrolled
access to the

counter

5

25COMP3231 03s1

Proposed Solution

• Lets use a locking primitive based on test-
and-set to protect the concurrent access

26COMP3231 03s1

Proposed solution?
int count = 0;
#define N 4 /* buf size */
prod() {

while(TRUE) {
item = produce()
if (count == N)

sleep();
acquire_lock()
insert_item();
count++;
release_lock()
if (count == 1)

wakeup(con);
}

}

con() {
while(TRUE) {

if (count == 0)
sleep();

acquire_lock()
remove_item();
count--;
release_lock();
if (count == N-1)

wakeup(prod);
}

}

27COMP3231 03s1

Problematic execution sequence

prod() {
while(TRUE) {

item = produce()
if (count == N)

sleep();
acquire_lock()
insert_item();
count++;
release_lock()
if (count == 1)

wakeup(con);

con() {
while(TRUE) {

if (count == 0)

sleep();
acquire_lock()
remove_item();
count--;
release_lock();
if (count == N-1)

wakeup(prod);
}

}

wakeup without a
matching sleep is

lost

28COMP3231 03s1

Problem
• The test for something to do and actually

going to sleep needs to be atomic

• The following does not work
acquire_lock()
if (count == N)

sleep();
release_lock()

The lock is held while asleep ⇒ count will
never change

29COMP3231 03s1

Semaphores

• Dijkstra (1965) introduced two primitives
that are more powerful than simple sleep
and wakeup alone.
– P(): proberen, from Dutch to test.
– V(): verhogen, from Dutch to increment.
– Also called wait & signal, down & up.

30COMP3231 03s1

How do they work
• If a resource is not available, the corresponding

semaphore blocks any process waiting for the resource
• Blocked processes are put into a process queue

maintained by the semaphore (avoids busy waiting!)
• When a process releases a resource, it signals this by

means of the semaphore
• Signalling resumes a blocked process if there is any
• Wait and signal operations cannot be interrupted
• Complex coordination can be implemented by multiple

semaphores

6

31COMP3231 03s1

Semaphore Implementation
• Define a semaphore as a record

typedef struct {
int count;
struct process *L;

} semaphore;

• Assume two simple operations:
– sleep suspends the process that invokes it.
– wakeup(P) resumes the execution of a blocked

process P.

32COMP3231 03s1

• Semaphore operations now defined as
wait(S):

S.count--;
if (S.count < 0) {

add this process to S.L;
sleep;

}

signal(S):
S.count++;
if (S.count <= 0) {

remove a process P from S.L;
wakeup(P);

}
• Each primitive is atomic

33COMP3231 03s1

Semaphore as a General
Synchronization Tool

• Execute B in Pj only after A executed in Pi

• Use semaphore count initialized to 0
• Code:

Pi Pj

M M

A wait(flag)
signal(flag) B

34COMP3231 03s1

Semaphore Implementation of a
Mutex

• Mutex is short for Mutual Exclusion
– Can also be called a lock

semaphore mutex;
mutex.count = 1; /* initialise mutex */

wait(mutex); /* enter the critcal region */

Blahblah();

signal(mutex); /* exit the critical region */

Notice that the initial count determines how many
waits can progress before blocking and requiring
a signal ⇒ mutex.count initialised as 1

35COMP3231 03s1

Solving the producer-consumer
problem with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */
semaphore empty = N;

/* count full slots */
semaphore full = 0;

36COMP3231 03s1

Solving the producer-consumer
problem with semaphores

prod() {
while(TRUE) {

item = produce()
wait(empty);
wait(mutex)
insert_item();
signal(mutex);
signal(full);

}
}

con() {
while(TRUE) {

wait(full);
wait(mutex);
remove_item();
signal(mutex);
signal(empty);

}
}

7

37COMP3231 03s1

FYI
• Counting semaphores versus binary semaphores:

– In a counting semaphore, count can take arbitrary integer values
– In a binary semaphore, count can only be 0 or 1

• Can be easier to implement
– Counting semaphores can be implemented in terms of binary

semaphores (how?)

• Strong semaphores versus weak semaphores:
– In a strong semaphore, the queue adheres to the FIFO policy
– In a weak semaphore, any process may be taken from the queue
– Strong semaphores can be implemented in terms of weak

semaphores (how?)

38COMP3231 03s1

Summarising

• Semaphores can be used to solve a
variety of concurrency problems

• However, programming with then can be
error-prone
– E.g. must signal for every wait for mutexes

• Too many, or too few signals or waits can have
catastrophic results

