Concurrency and
Synchronisation

!I.-.n_ THE UNIVERSITY OF COMP3231 03s1
G8| NEW SOUTH WALES

Textbook

e Sections 2.3 & 2.4

COMP3231 03s1

Making Single-Threaded Code Multithreaded

Thread 1 Thread 2
@ %
£ Access (ermo set)
| <

Open (errno overwritien)

;

;

Errno inspected

Conflicts between threads over the use of a
global variable

Inter- Thread and Process
Communication

Spooler

directory
4 abc out=4
6 prog.n
7 in=7

Two processes want to access shared memory at same
time

TN THE UNIVERSITY OF COMP3231 03s1 4
8 NEW SOUTH WALES

Critical Region

* We can control access to the shared
resource by controlling access to the code
that accesses the resource.

= A critical region is a region of code where
shared resources are accessed.

— Variables, memory, files, etc...

* Uncoordinated entry to the critical region
results in a race condition

— Incorrect behaviour, deadlock, lost work, ...

COMP3231 03s1 S)

Critical Regions

A enters critical region

/ A leaves critical region

Process A | |
I I I |
I I I |
| | Battemptsto B enters | B leaves
| | enter critical | critical region : critical region
region
I I I |
I I
PI’OCGSS B
I (N Y,
| | v | |
I I B blocked I l
T, T T, Ty

Time ——

Mutual exclusion using critical regions

8 THE UNIVERSITY OF COMP3231 03s1 6
%S| NEW SOUTH WALES

Critical Regions

Also called critical sections

Conditions required of any solution to the critical
region problem
o Mutual Exclusion:
« No two processes simultaneously in critical region

« No assumptions made about speeds or numbers of
CPUs

e Progress

« No process running outside its critical region may block
another process

« Bounded
o« No process must wait forever to enter its critical region

THE UNIVERSITY OF COMP3231 03s1
E%s NEW SOUTH WALES

A non-solution

* A lock variable
— If lock == 1,
« somebody is in the critical section and we must
wait
— |f lock == 0,

* nobody is in the critical section and we are free to
enter

THE UNIVERSITY OF COMP3231 03s1 8
Gl NEW SOUTH WALES

A non-solution

while (TRUE) ({ while (TRUE) ({
while (lock == 1) ; while (lock == 1) ;
lock = 1; lock = 1;
critical () ; critical () ;
lock = 0 lock =0
non critical(); non critical();

} }

= THE UNIVERSITY OF COMP3231 03s1

% NEW SOUTH WALES

A problematic execution
seguence

while (TRUE) {
while (TRUE) {
while(lock == 1) ;
while (lock == 1) ;

lock = 1;
lock = 1;
critical(); <(EEEEEP» critical();
lock = 0
non critical();
} lock =0

non critical();

}

COMP3231 03s1 10

Observation

« Unfortunately, it is usually easier to show
something does not work, than it is to
prove that it does work.

— ldeally, we'd like to prove, or at least

informally demonstrate, that our solutions
work.

= THE UNIVERSITY OF COMP3231 03s1 11
il NEW SOUTH WALES

Mutual Exclusion by Taking Turns

while (TRUE) { while (TRUE) {
while (turn !=0) /* loop */ ; while (turn 1= 1) /* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();
} }
(a) (b)

Proposed solution to critical region problem

(a) Process 0. (b) Process 1.

= THE UNIVERSITY OF COMP3231 03s1 12
ERE NEw SOUTH WALES

Mutual Exclusion by Taking Turns

 Works due to strict alternation
— Each process takes turns

« Cons
— Busy waliting
— Process must wait its turn even while the other

process is doing something else.

« With many processes, must wait for everyone to have a turn

— Does not guarantee progress if a process no longer needs a
turn.

« Poor solution when processes require the critical section at
differing rates

THE UNIVERSITY OF COMP3231 03s1 13
S8l NEW SOUTH WALES

Peterson’s Solution

 See the textbook

TSR] THE UNIVERSITY OF
B5% NEW SOUTH WALES

COMP3231 03s1

14

Mutual Exclusion by Disabling

Interrupts
« Before entering a critical region, disable
Interrupts
 After leaving the critical region, enable interrupts
* Pros
— simple
« Cons

— Only available in the kernel

— Blocks everybody else, even with no contention
« Slows interrupt response time

— Does not work on a multiprocessor

= THE UNIVERSITY OF COMP3231 03s1 15
ERE NEw SOUTH WALES

Hardware Support for mutual
exclusion

 Test and set instruction

— Can be used to implement lock variables correctly
* It loads the value of the lock
e Iflock ==0,
— set the lock to 1
— return the result 0

 If lock ==
— return 1
— Hardware guarantees that the instruction executes
atomically.
» Atomically: As an indivisible unit.

THE UNIVERSITY OF COMP3231 03s1
E%s NEW SOUTH WALES

16

Mutual Exclusion with Test-and-Set

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the
TSL instruction

B THE UNIVERSITY OF COMP3231 03s1 17
el NEW SOUTH WALES

Test-and-Set

* Pros
— Simple (easy to show it's correct)

— Available at user-level
« To any number of processors
* To implement any number of lock variables

e Cons

— Busy waits (also termed a spin lock)
« Consumes CPU

« Deadlock in the presence of priorities

— If a low priority process has the low and a high priority process
attempts to get it, the high priority process will busy-wait
forever.

« Starvation is possible when a process leaves its critical
section and more than one process is waiting.

TN THE UNIVERSITY OF COMP3231 03s1 18
gl NEW SOUTH WALES

Tackling the Busy-Wait Problem

« Sleep / Wakeup
— The idea

* When process is waiting for an event, it calls sleep
to block, instead of busy waiting.

* The the event happens, the event generator
(another process) calls wakeup to unblock the
sleeping process.

= THE UNIVERSITY OF COMP3231 03s1 19
ERE NEw SOUTH WALES

The Producer-Consumer
Problem

« Also called the bounded buffer problem

* A producer produces data items and stores the
items in a buffer

A consumer takes the items out of the buffer and
consumes them.

Producer

/

Consumer

= THE UNIVERSITY OF COMP3231 03s1 20
il NEW SOUTH WALES

Issues

We must keep an accurate count of items in
buffer

— Producer
 can sleep when the buffer is full,

« and wakeup when there is empty space in the buffer

— The consumer can call wakeup when it consumes the first entry
of the full buffer

— Consumer
« Can sleep when the buffer is empty

« And wake up when there are items available

— Producer can call wakeup when it adds the first item to the
buffer

COMP3231 03s1 21

Pseudo-code for producer and
consumer

int count = 0; con() {

#define N 4 /* buf size */ while (TRUE) {

prod () { if (count == 0)

while (TRUE) { sleep() ;
item = produce () remove item() ;
if (count == N) count--;
sleep() ; if (count == N-1)

insert item(); wakeup (prod) ;
count++; }
if (count == 1) }

wakeup (con) ;

COMP3231 03s1 22

Problems

int count = 0; con() {

#define N 4 /* buf size */ while (TRUE) {

prod () { if (count == 0)

while (TRUE) { sleep() ;
item = produce () remove item() ;
if (count == N) count--;
sleep() ; if (count == N-1)

insert item(); wakeup (prod) ;
count++; }

if (count == 1) }
wakeup (con) ;

TN THE UNIVERSITY OF COMP3231 03s1 23
| NEW SOUTH WALES

Problems

int count = 0; con() {
#define N 4 /* buf size */ while (TRUE) {
prod () { if (count == 0)
while (TRUE) { sleep() ;
item = produce () remove item() ;
if (count == N) count--;

if (count == N-1)
wakeup (prod) ;

sleep() ;
insert item()
count++;
if (count == 1)

wakeup (con) ;

TN THE UNIVERSITY OF COMP3231 03s1 24
| NEW SOUTH WALES

Proposed Solution

* Lets use a locking primitive based on test-
and-set to protect the concurrent access

!==_ THE UNIVERSITY OF COMP3231 03s1 25
el NEW SOUTH WALES

Proposed solution?

int count = 0; con() {
#define N 4 /* buf size */ while (TRUE) {
prod() { if (count == 0)

while (TRUE) ({

slee ;
item = produce () Pl

acquire lock()

if (count == N)

sleep() ; remove item() ;
acquire lock() count--;
insert item(); release lock();
count++; if (count == N-1)
release lock() wakeup (prod) ;
if (count == 1) }

wakeup (con) ;

S THE UNIVERSITY OF COMP3231 03s1 26
@8S NEW SOUTH WALES

Problematic execution sequence

con() {
while (TRUE) ({
if (count == 0)

prod() {
while (TRUE) {

item = produce ()
if (count == N)
sleep() ;
acquire lock()
insert item();

count++;

release lock()
if (count == 1)
wakeup (con) ;
sleep () ;
acquire lock()
remove_ item() ;
count--;
release lock();
if (count == N-1)
wakeup (prod) ;

=8 T E UNIVERSITY OF COMP3231 q331} 27

i NEW SOUTH WALES

Problem

* The test for something to do and actually
going to sleep needs to be atomic

* The following does not work

acquire lock()

if (count == N)
sleep() ;

release lock()

The lock is held while asleep = count will
never change

COMP3231 03s1 28

Semaphores

* Dijkstra (1965) introduced two primitives
that are more powerful than simple sleep
and wakeup alone.

— P(): proberen, from Dutch to test.
— V(): verhogen, from Dutch to increment.
— Also called wait & signal, down & up.

,-_ =A . E UNIVERSITY OF COMP3231 03s1 29

II. NEW SOUTH WALES

How do they work

 If a resource is not available, the corresponding
semaphore blocks any process waiting for the resource

» Blocked processes are put into a process queue
maintained by the semaphore (avoids busy waiting!)

 When a process releases a resource, it signals this by
means of the semaphore

« Signalling resumes a blocked process if there is any
« Wait and signal operations cannot be interrupted

« Complex coordination can be implemented by multiple
semaphores

THE UNIVERSITY OF COMP3231 03s1 30
Gl NEW SOUTH WALES

Semaphore Implementation

« Define a semaphore as a record
typedef struct {

Int count;
struct process *L;
} semaphore;

* Assume two simple operations:
— sleep suspends the process that invokes it.

— wakeup(P) resumes the execution of a blocked
process P.

THE UNIVERSITY OF COMP3231 03s1
E%s NEW SOUTH WALES

31

« Semaphore operations now defined as
wait(S):
S.count--;
if (S.count <0) {

add this process to S.L;

sleep;
}
signal(S):
S.count++;

if (S.count <=0) {

remove a process P from S.L;
wakeup(P);

}

« Each primitive is atomic

COMP3231 03s1

32

Semaphore as a General
Synchronization Tool

* Execute B in P, only after A executed in P,

* Use semaphore count initialized to O
* Code:

P, P,
A wait(flag)
signal(flag) B

Semaphore Implementation of a
Mutex

 Mutex is short for Mutual Exclusion
— Can also be called a lock

semaphore mutex;
mutex.count = 1; /* initialise mutex */

wait (mutex); /* enter the critcal region */
Blahblah() ;

signal (mutex); /* exit the critical region */

Notice that the initial count determines how many
waits can progress before blocking and requiring
a sighal = mutex.count initialised as 1

THE UNIVERSITY OF COMP3231 03s1 34
E%s NEW SOUTH WALES

Solving the producer-consumer
problem with semaphores

#define N = 4
semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0;

COMP3231 03s1

35

Solving the producer-consumer
problem with semaphores

prod() { con() {
while (TRUE) ({ while (TRUE) ({
item = produce() wait (£full) ;
wait (empty) ; wait (mutex) ;
wait (mutex) remove item() ;

insert item(); signal (mutex) ;

signal (mutex) ; signal (empty) ;

signal (full) ; }

COMP3231 03s1

36

FYI

« Counting semaphores versus binary semaphores:
— In a counting semaphore, count can take arbitrary integer values
— In a binary semaphore, count can only be 0 or 1
* Can be easier to implement

— Counting semaphores can be implemented in terms of binary
semaphores (how?)

» Strong semaphores versus weak semaphores:
— In a strong semaphore, the queue adheres to the FIFO policy
— In a weak semaphore, any process may be taken from the queue

— Strong semaphores can be implemented in terms of weak
semaphores (how?)

TN THE UNIVERSITY OF COMP3231 03s1 37
gl NEW SOUTH WALES

Summarising

 Semaphores can be used to solve a
variety of concurrency problems

 However, programming with then can be
error-prone

— E.g. must signal for every wait for mutexes

* Too many, or too few signals or waits can have
catastrophic results

--.;'.;.'..- THE UNIVERSITY OF COMP3231 03s1 38

"‘I. NEW SOUTH WALES

