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Concrete Syntax

Arithmetic Expressions

i ∈ Z
i Atom

a SExp

(a) Atom

e Atom

e PExp

e PExp

e SExp

a Atom b PExp

a× b PExp

a PExp b SExp

a + b SExp

All the syntax we have seen so far is concrete syntax. Concrete
syntax is described by judgements on strings.
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Abstract Syntax

Working with concrete syntax directly is unsuitable for both
compiler implementation and proofs. Consider:

3 + (4× 5)

3 + 4× 5

(3 + (4× 5))

TIMTOWTDI1 makes life harder for us. Different derivations
represent the same semantic program. We would like a
representation of programs that is as simple as possible, removing
any extraneous information. Such a representation is called
abstract syntax.

1“There is more than one way to do it”.
3



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Abstract Syntax

Working with concrete syntax directly is unsuitable for both
compiler implementation and proofs. Consider:

3 + (4× 5)

3 + 4× 5

(3 + (4× 5))

TIMTOWTDI1 makes life harder for us. Different derivations
represent the same semantic program. We would like a
representation of programs that is as simple as possible, removing
any extraneous information. Such a representation is called
abstract syntax.

1“There is more than one way to do it”.
4



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Abstract Syntax

Typically, the abstract syntax of a program is represented as a tree
rather than as a string.

(3 + (4× 5)) ←→

+

3 ×

4 5

Writing trees in our inference rules would become unwieldy. We
shall define a term language in which to express trees.
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Terms

Definition

In this course, a term is a structure that can either be a symbol,
like Plus or Times or 3; or a compound, which consists of an
symbol followed by one or more argument subterms, all in
parentheses.

t ::= Symbol | (Symbol t1 t2 . . . )

These particular terms are also known as s-expressions. Terms can
equivalently be thought of a subset of Haskell where the only kinds
of expressions allowed are literals and data constructors.
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Term Examples

Example

+

3 ×

4 5

(Plus (Num 3) (Times (Num 4) (Num 5)))

Armed with an appropriate Haskell data declaration, this can be
implemented straightforwardly:

data Exp = Plus Exp Exp
| Times Exp Exp
| Num Int
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Concrete to Abstract

Concrete Syntax

i ∈ Z
i Atom

a SExp

(a) Atom

e Atom

e PExp

e PExp

e SExp

a Atom b PExp

a× b PExp

a PExp b SExp

a + b SExp

Abstract Syntax

i ∈ Z
(Num i) AST

a AST b AST

(Plus a b) AST

a AST b AST

(Times a b) AST

Now we have to specify a relation to connect the two!
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Relations

Up until now, most judgements we have used have been unary —
corresponding to a set of satisfying objects.
A judgement can also express a relationship between two objects
(a binary judgement) or a number of objects (an n-ary judgement).

Example (Relations)

4 divides 16 (binary)

mail is an anagram of liam (binary)

3 plus 5 equals 8 (ternary)

n-ary judgements where n ≥ 2 are sometimes called relations, and
correspond to an n-tuple of satisfying objects.
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Parsing Relation
3 + (4× 5)

(3 + (4× 5))

3 + 4× 5 (Plus (Num 3) (Times (Num 4) (Num 5)))

i ∈ Z
i Atom

←→ (Num i) AST

a Atom

←→ a′ AST

b PExp

←→ b′ AST

a× b PExp

←→ (Times a′ b′) AST

a PExp

←→ a′ AST

b SExp

←→ b′ AST

a + b SExp

←→ (Plus a′ b′) AST

e SExp

←→ a′ AST

(e) Atom

←→ a′ AST

e Atom

←→ a AST

e PExp

←→ a AST

e PExp

←→ a AST

e SExp

←→ a AST
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Relations as Algorithms

The parsing relation ←→ is an extension of our existing concrete
syntax rules. Therefore it is unambiguous, just as those rules are.
Furthermore, the abstract syntax can be unambiguously
determined solely by looking at the left hand side of ←→.

An Algorithm

To determine the term corresponding to a particular string:

1 Derive the left hand side of the ←→ (the concrete syntax)
bottom-up until reaching axioms.

2 Fill in the right hand side of the ←→ (the abstract syntax)
top-down, starting at the axioms.

This process is called parsing.

17



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Relations as Algorithms

The parsing relation ←→ is an extension of our existing concrete
syntax rules. Therefore it is unambiguous, just as those rules are.
Furthermore, the abstract syntax can be unambiguously
determined solely by looking at the left hand side of ←→.

An Algorithm

To determine the term corresponding to a particular string:

1 Derive the left hand side of the ←→ (the concrete syntax)
bottom-up until reaching axioms.

2 Fill in the right hand side of the ←→ (the abstract syntax)
top-down, starting at the axioms.

This process is called parsing.

18



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Example

Rules

i ∈ Z
i A

←→ (Num i)

a S

←→ a′

(a) A

←→ a′

e A

←→ a

e P

←→ a

e P

←→ a

e S

←→ a

a A

←→ a′

b P

←→ b′

a× b P

←→ (Times a′ b′)

a P

←→ a′

b S

←→ b′

a + b S

←→ (Plus a′ b′)

1 A

←→ (Num 1) AST

1 P

←→ (Num 1) AST

2 A

←→ (Num 2) AST

3 A

←→ (Num 3) AST

3 P

←→ (Num 3) AST

2× 3 P

←→ (Times (Num 2) (Num 3)) AST

2× 3 S

←→ (Times (Num 2) (Num 3)) AST

1 + 2× 3 S

←→ (Plus (Num 1) (Times (Num 2) (Num 3))) AST
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The Inverse
What about the inverse operation to parsing?

Unparsing

Unparsing, also called pretty-printing, is the process of starting
with the term on the right hand side of ←→ and attempting to
synthesise a string on the left.

Problem
There are many concrete strings for a given abstract syntax term.
The algorithm is non-deterministic.

While it is desirable to have:

parse ◦ unparse = id

It is not usually true that:

unparse ◦ parse = id
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Example

3 + (4× 5)

(3 + (4× 5))

3 + 4× 5 (Plus (Num 3) (Times (Num 4) (Num 5)))

Going from right to left requires some formatting guesswork to
produce readable code.

Algorithms to do this can get quite involved!

Let’s implement a parser for arithmetic. to coding
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Adding Let

Let us extend our arithmetic expression language with variables,
including a let construct to give them values.

Concrete Syntax

x Ident

x Atom

x Ident e1 SExp e2 SExp

let x = e1 in e2 end Atom

Example

let x = 3 in let x = 3 in

x + 4 let y = 4 in x + y end

end end
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Scope

let x = 5 in

let y = 2 in

x + y

end

end

binding occurrence of x

usage occurrence of x

scope of x

The process of finding the
binding occurrence of each
used variable is called scope
resolution. Usually this is done
statically. If no binding can be
found, an out of scope error is
raised.
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Shadowing

What does this program evaluate to?

let x = 5 in

let x = 2 in

x + x

end

+ x end

x is shadowed here

This program results in 9.
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α-equivalence

What is the difference between these two programs?

let x = 5 in

let x = 2 in

x + x

end

end

let a = 5 in

let y = 2 in

y + y

end

end

They are semantically identical, but differ in the choice of bound
variable names. Such expressions are called α-equivalent.

We write e1 ≡α e2 if e1 is α-equivalent to e2. The relation ≡α is
an equivalence relation. That is, it is reflexive, transitive and
symmetric.
The process of consistently renaming variables that preserves
α-equivalence is called α-renaming.
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Substitution

A variable x is free in an expression e if x occurs in e but is not
bound in e.

Example (Free Variables)

The variable x is free in x + 1, but not in let x = 3 in x + 1 end.

A substitution, written e[x := t] (or e[t/x ] in some other courses),
is the replacement of all free occurrences of x in e with the term t.

Example (Simple Substitution)

(5× x + 7)[x := y × 4] is the same as (5× (y × 4) + 7).
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Problems with substitution

Consider these two α-equivalent expressions.

let y = 5 in y × x + 7 end

and
let z = 5 in z × x + 7 end

What happens if you apply the substitution [x := y × 3] to both
expressions?

You get two non-α-equivalent expressions!

let y = 5 in y × (y × 3) + 7 end

and
let z = 5 in z × (y × 3) + 7 end

This problem is called capture.
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Variable Capture

Capture can occur for a substitution e[x := t] when a bound
variable in e clashes with a free variable occuring in t.

Fortunately

It is always possible to avoid capture.

α-rename the offending bound variable to an unused name, or

If you have access to the free variable’s definition, renaming
the free variable, or

Use a different abstract syntax representation that makes
capture impossible (More on this later).
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Abstract Syntax for Variables

We shall extend our AST and parsing relation to include a
definition for let and variables.

Let Syntax

x Ident

x Atom←→ (Var x) AST

x Ident e1 SExp←→ a1 AST e2 SExp←→ a2 AST

let x = e1 in e2 end Atom←→ (Let x a1 a2) AST
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First Order Abstract Syntax
Consider the following two pieces of abstract syntax:

(Let "x" (Num 5) (Plus (Num 4) (Var "x")))

(Let "y" (Num 5) (Plus (Num 4) (Var "y")))

This demonstrates some problems with our abstract syntax
approach.

1 Substitution capture is a problem.
2 α-equivalent expressions are not equal. Determining if an

expression is α-equivalent requires us to search for a
consistent α-renaming of variables.

3 No distinction is made between binding and usage occurrences
of variables. This means that we must define substitution by
hand on each type of expression we introduce.

4 Scoping errors cannot be easily detected — malformed syntax
is easy to write.
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de Bruijn Indices

One popular approach to address the first issue is de Bruijn indices.

Key Idea

1 Remove all identifiers from binding expressions like Let.

2 Replace the identifier in a Var with a number indicating how
many binders we must skip in order to find the binder for that
variable.

(Let "a" (Num 5)

(Let "y" (Num 2)

(Plus (Var "a") (Var "y"))))

(Let (Num 5)

(Let (Num 2)

(Plus (Var 1) (Var 0))))
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Debruijnification

Algorithm

Given a piece of first order abstract syntax with explicit variable
names, we can convert to de Bruijn indices by keeping a stack of
variable names, pushing onto the stack at each Let and popping
after the variable goes out of scope. When a usage occurrence is
encountered, replace the variable name with its first position in the
stack (starting at the top of the stack).

This approach naturally handles shadowing. It’s also possible, but
harder, to have de Bruijn indices going in the other direction (from
the bottom of the stack, upwards).
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de Bruijn Substitution
Substitution is now capture avoiding by definition.

(Num i)[n := t] = (Num i)
(Plus a b)[n := t] = (Plus a[n := t] b[n := t])
(Times a b)[n := t] = (Times a[n := t] b[n := t])

(Var m)[n := t] =


t if n = m

(Var (m − 1)) if m > n

(Var m) otherwise

(Let e1 e2)[n := t] = (Let e1[n := t] e2[n + 1 := t↑0])

Where e↑n is an up-shifting operation defined as follows:

(Num i)↑n = (Num i)
(Plus a b)↑n = (Plus a↑n b↑n)
(Times a b)↑n = (Times a↑n b↑n)

(Var m)↑n =

{
(Var (m + 1)) if m ≥ n

(Var m) otherwise

(Let e1 e2)↑n =
(
Let e1↑n e2↑n+1

)
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Examining de Bruijn indices

How do de Bruijn indices stack up against explicit names?

1 Substitution capture solved.

2 α-equivalent expressions are now equal.

3 We still must define substitution machinery by hand for each
type of expression.

4 It is still possible to make malformed syntax – indices that
overflow the stack, for example.

Two out of four isn’t bad, but can we do better by changing the
term language?

64



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Examining de Bruijn indices

How do de Bruijn indices stack up against explicit names?

1 Substitution capture solved.

2 α-equivalent expressions are now equal.

3 We still must define substitution machinery by hand for each
type of expression.

4 It is still possible to make malformed syntax – indices that
overflow the stack, for example.

Two out of four isn’t bad, but can we do better by changing the
term language?

65



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Examining de Bruijn indices

How do de Bruijn indices stack up against explicit names?

1 Substitution capture solved.

2 α-equivalent expressions are now equal.

3 We still must define substitution machinery by hand for each
type of expression.

4 It is still possible to make malformed syntax – indices that
overflow the stack, for example.

Two out of four isn’t bad, but can we do better by changing the
term language?

66



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Examining de Bruijn indices

How do de Bruijn indices stack up against explicit names?

1 Substitution capture solved.

2 α-equivalent expressions are now equal.

3 We still must define substitution machinery by hand for each
type of expression.

4 It is still possible to make malformed syntax – indices that
overflow the stack, for example.

Two out of four isn’t bad, but can we do better by changing the
term language?

67



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Examining de Bruijn indices

How do de Bruijn indices stack up against explicit names?

1 Substitution capture solved.

2 α-equivalent expressions are now equal.

3 We still must define substitution machinery by hand for each
type of expression.

4 It is still possible to make malformed syntax – indices that
overflow the stack, for example.

Two out of four isn’t bad, but can we do better by changing the
term language?

68



Abstract Syntax Parsing Bindings First Order Abstract Syntax Higher Order Abstract Syntax

Higher Order Terms

We shall change our term language to include built-in notions of
variables and binding.

t ::= Symbol (symbols)
| x (variables)
| t1 t2 (application)
| x . t (binding or abstraction)

As in Haskell, we shall say that application is left-associative, so

(Plus (Num 3) (Num 4)) = ((Plus (Num 3)) (Num 4))

Now the binding and usage occurrences of variables are
distinguished from regular symbols in our term language. Let’s see
what this lets us do...
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Representing Let

a1 AST a2 AST

(Let a1 (x . a2)) AST

We no longer need a rule for variables, because they’re baked into
the structure of terms.

How would we represent this AST in Haskell?

data AST = Num Int
| Plus AST AST
| Times AST AST
| Let AST

So let x = 3 in x + 2 end becomes, in Haskell:

(Let (Num 3) (λx → Plus x (Num 2))
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Substitution
We can now define substitution across all terms in the meta-logic:

Symbol[x := e] = Symbol

y [x := e] =

{
e if y = x

y otherwise

(t1 t2)[x := e] = t1[x := e] t2[x := e]

(y . t)[x := e] =


(y . t) if x = y

(y . t[x := e]) if y /∈ FV(e)

undefined otherwise

Where FV(·) is the set of all free variables in a term:

FV(Symbol) = ∅
FV(x) = {x}
FV(t1 t2) = FV(t1) ∪ FV(t2)
FV(x . t) = FV(t) \ {x}
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Cheating Outrageously

Substitution capture is still a problem in HOAS. But it is not our
problem. Because substitution is defined in the meta-language, it’s
the job of the implementors of the meta-language (if any) to deal
with capture issues.

When Haskell is our meta-language, it’s the job of the GHC
developers.

When we are doing proofs in our meta-logic, there is no
implementation, so we can just say that we assume
α-equivalent terms to be equal, and therefore assume that
variables are always renamed to avoid capture.

So, we have solved the problem by making it someone else’s
problem. Outrageous cheating!
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Evaluating All Approaches

HOAS FOAS
Proofs Haskell Strings de Bruijn

Capture Cheat Cheat Problem Solved
α-equivalence Cheat Cheat Problem Solved
Generic subst. Solved Solved Problem Problem
Malformed syntax Cheat Cheat Problem Problem

In embedded languages and in pen and paper proofs, HOAS is
very common.

In conventional language implementations and
machine-checked formalisations, de Bruijn indices are more
popular.

In your assignments, strings will be used
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