
COMP3161/COMP9164 Supplementary Lecture Notes

Imperative Programming

Liam O’Connor Johannes Åman Pohjola

October 1, 2024

The term imperative refers to programming languages that are defined as a series of commands
that manipulate both the external world and internal state. The order in which commands are
executed is significant in an imperative language, as the state changes over time.

Typically, states can be defined as a mapping from variable names to their values, however
some lower-level languages may require more complex models. For example, to specify an assem-
bly language, a detailed model containing a processor’s registers and accessible memory may be
required.

Early imperative languages allowed not just global state but also global control flow – a go

to statement could be used to transfer control to anywhere else in the entire program. Edsger
Dijkstra was one of the first computer scientists to advocate the notion of structured programming,
as it allowed imperative control flow to be made amenable to local reasoning. This movement was
responsible for the introduction of things like loops, conditionals, and subroutines or functions to
imperative languages.

We will define an imperative language based on structured programming, describe its static
and dynamic semantics, and specify a Hoare logic to demonstrate the benefits of structured pro-
gramming for program verification.

1 Syntax

We’re going to specify a language TinyImp. This language consists of state-changing statements
and pure, evaluable arithmetic expressions, as we have defined before.

Stmt ::= skip Do nothing
| x := Expr Assignment
| var y · Stmt Declaration
| if Expr then Stmt else Stmt fi Conditional
| while Expr do Stmt od Loop
| Stmt ; Stmt Sequencing

Expr ::= ⟨Arithmetic expressions⟩

The statement skip does nothing, x := e updates the (previously-declared) variable x to have a
new value resulting from the evaluation of e, var y ·s declares a local variable that is only in scope
within the statement s, if statements and while loops behave much like what you expect, and
s1; s2 is a compound statement consisting of s1 followed sequentially by s2.

For the purposes of this language, we will assume that all variables are of integer types. This
means for boolean conditions, we will adopt the C convention that zero means false, and non-zero
means true.

Here are some example programs written in TinyImp. First, a program that computes the

1



factorial of a fixed constant N :
var i ·
var m ·
i := 0;
m := 1;
while i < N do
i := i+ 1;
m := m× i

od

And the program that computes the Nth Fibonacci number for some constant N:1

var m · var n · var i ·
m := 1;n := 1;
i := 1;
while i < N do
var t · t := m;
m := n;
n := m+ t;
i := i+ 1

od

2 Static Semantics

Seeing as all variables are of integer type, type checking is not really an issue for TinyImp. We
want our programs to be well-scoped—that is, all variables should be declared before use. But
there is more to check. In particular, are all variables initialised? That is, are they assigned to a
value before being read from? Otherwise, their values may be undefined, and we cannot determine
the result from the semantics.

For this reason, we will define a static semantics judgement U ;V ⊢ s ok ⇝ W consisting of
two sets of variables in the context: U , which consists of all declared variables in scope; and V ,
which consists of all initialised variables in scope. The judgement ok denotes that the statement
s does not read from any uninitialised variables, or refer to any variable not in scope. The set W
denotes all the variables that are guaranteed to be written to when s executes.

Firstly, the statement skip does not affect any variables, so is valid under any context:

U ;V ⊢ skip ok⇝ ∅

If we assign to a variable x with the expression e, we want to make sure that e only mentions
variables that have been initialised. The variable x must be declared, but may be uninitialised.
After executing the assignment, we know that x has now been written to.

x ∈ U FV(e) ⊆ V

U ;V ⊢ x := e ok⇝ {x}

When we declare a variable y, we introduce it to the set of variables. Once the variable y is no
longer in scope, we remove it from the set W as it is no longer relevant information for us to check
any further statements.

U ∪ {y};V ⊢ s ok⇝W

U ;V ⊢ var y · s ok⇝W \ {y}
1The notational convention is that lower-case variables are program variables, i.e., they are part of the syntax

of the TinyImp program. Upper-case variables are meta-variables. We can think of expressions involving meta-
variables as describing as a family of concrete programs: one where the programmer wrote 0 in place of N , another
where the programmer wrote 1, and so on.

2



Conditional statements must once again ensure that the condition only mentions initialised vari-
ables. The two branches of the condition must both be valid. After the conditional has executed,
the only variables that we can guarantee will be written to are those written to regardless of the
branch taken. Therefore, our final write set is the intersection of the write sets of the two branches.

FV(e) ⊆ V U ;V ⊢ s1 ok⇝W1 U ;V ⊢ s2 ok⇝W2

U ;V ⊢ if e then s1 else s2 fi ok⇝W1 ∩W2

While loops, much like if, must ensure that the guard only mentions initialised variables. Fur-
thermore, we don’t know if the body of the loop will run at all—the guard might be false initially.
In that case, this statement will never write to any variables. Therefore, we cannot guarantee that
any variables will be initialised by running a while loop.

FV(e) ⊆ V U ;V ⊢ s ok⇝W

U ;V ⊢ while e do s od ok⇝ ∅

Lastly, for sequential composition, we first check the first statement. Any variables written to by
the first statement are considered initialised in the second statement, so we add them to the set
of initialised variables. The overall set of variables written to by the sequential composition is the
union of the two write sets.

U ;V ⊢ s1 ok⇝W1 U ; (V ∪W1) ⊢ s2 ok⇝W2

U ;V ⊢ s1; s2 ok⇝W1 ∪W2

These rules correspond to a static over-approximation of the dynamic property that all variables
must be initialised before use. We call it static because the analysis can be completed without
running the program. It’s an over-approximation because there exists programs where all variables
are initialised, but that are not ok.

3 Dynamic Semantics

We will use big-step operational semantics, describing evaluation from a pair containing a state-
ment to execute and a program state σ. A state is a mutable mapping from variables to their
values. It allows us to keep track of which variables are declared, whether a declared variable is
assigned to a value, and if so, which value.2 We will use the following notation to describe state
operations

• To read a variable x from the state σ, we write σ(x).

• To update a state σ to give a previously declared variable x the v we write (σ : x 7→ v).

• To extend a state σ with a new, previously undeclared variable x, we write σ · x. This does
not assign a value to x, so (σ · x)(x) is undefined.

• To remove a variable x from the set of declared variables, we write (σ|x).

• The final operation caters to highly specific needs. (σ|σ′

x ) updates the state σ by first
removing x from the set of declared variables, then replacing it with whatever x is in the
state σ′. More formally:

σ|σ
′

x =

 σ|x if x is undeclared in σ′

(σ|x) · x if x is declared in σ′, but σ′(x) is undefined.
(σ : x 7→ σ′(x)) if σ′(x) is defined

Intuitively, this represents exiting the scope of x. When we do so, any previous declaration
of x that may have been locally shadowed comes back into scope. Think of σ as the state
when we exit the scope of x, and σ′ as the state right before we entered the scope of x.

2This can be formalised with partial functions.

3



We will assume we have defined a relation σ ⊢ e ⇓ v for arithmetic expressions, which evaluates
arithmetic expression e with the values for variables provided by σ. The evaluation rules resemble
those we have done previously.

Skip The rule for skip simply leaves the state unchanged.

(σ, skip) ⇓ σ

Sequencing The rule for sequential composition s1; s2 threads the the state through the execu-
tion of the two statements in order. This forces us to evaluate s1 before s2, as the input state of
s2 is the output state of s1:

(σ1, s1) ⇓ σ2 (σ2, s2) ⇓ σ3
(σ1, s1; s2) ⇓ σ3

Assignment The rule for assignment updates the state to reflect the new value for the variable,
after evaluating the expression:

σ ⊢ e ⇓ v
(σ, x := e) ⇓ (σ : x 7→ v)

If x is undeclared in σ, the assignment rule is inapplicable, because σ : x 7→ v is not defined. If e
contains any variables that are uninitialised in σ, the assignment rule is also inapplicable—there
will be no v such that σe ⊢ v.

Declaration The rule for variable declarations introduces a new variable into the state when
evaluating the statement for which it is in scope, then removes it again before returning the result
state:

(σ1 · x, s) ⇓ σ2
(σ1, var x · s) ⇓ (σ2|σ1

x )

Conditionals Conditionals are defined with two rules. If the condition evaluates to a non-zero
value, then the then case is executed:

σ1 ⊢ e ⇓ v v ̸= 0 (σ1, s1) ⇓ σ2
(σ1, if e then s1 else s2 fi) ⇓ σ2

Otherwise, the else case is executed:

σ1 ⊢ e ⇓ 0 (σ1, s2) ⇓ σ2
(σ1, if e then s1 else s2 fi) ⇓ σ2

Loops For while loops, the situation is similar. If the guard is false, we do not execute anything:

σ1 ⊢ e ⇓ 0

(σ1, while e do s od) ⇓ σ1

Here, we’re trying to use x immediately after declaring it, without initialising it. Otherwise, we
execute the loop body and then execute the whole loop again in the resulting state:

σ1 ⊢ e ⇓ v v ̸= 0
(σ1, s) ⇓ σ2 (σ2, while e do s od) ⇓ σ3

(σ1, while e do s od) ⇓ σ3

4



4 Variable declaration semantics

There are (at least) three approaches to dealing with uninitialised variables:

1. Crash and burn

2. Default values

3. Read junk data

In the following, we discuss how each of these can be captured in the big-step semantics. These
should be indistinguishable for programs that are ok.

4.1 Crash-and-burn semantics

In the semantics given in Section 3, a statement that attempts to use an uninitialised value does not
evaluate to anything. Consider, for example, the following program fragment, where we assume y
is a variable that has already been declared:

var x · y := x+ 1

If we start from a state σ where y is defined, we cannot derive any judgement that tells us what
the final state should be, because we’ll be unable to close the following derivation

???

(σ · x, y := x+ 1) ⇓ ??

(σ,var x · y := x+ 1) ⇓ ??

since the assignment rule is inapplicable. In implementation terms, this means the program will
not terminate successfully. This is analogous to how uninitialised variables in Python behave:3

>>> x+1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’x’ is not defined

4.2 Default value semantics

In many programming languages, variables that are declared are automatically initialised to a
default value. For example, the following Java program will always print 1 because Java initialises
all fields to a default value—in the case of int, that’s 0.

public class test {
static int x;

public static void main(String[] args) {
System.out.println(x+1);

}
}

To adapt our operational semantics above to default-value semantics, we could replace the
declaration rule with the following:

((σ1 · x) : x 7→ 0, s) ⇓ σ2
(σ1, var x · s) ⇓ (σ2|σ1

x )

3Not a precise analogy, since Python doesn’t do explicit variable declarations.

5



Here, initialisation is modelled by immediately updating all variables to 0 as soon as they are
declared. Now, our crash-and-burn example can be evaluated as follows:

(σ · x) : x 7→ 0 ⊢ x+ 1 ⇓ 1

((σ · x) : x 7→ 0, y := x+ 1) ⇓ (σ · x) : x 7→ 0 : y 7→ 1

(σ,var x · y := x+ 1) ⇓ σ : y 7→ 1

Note that the last step in the derivation relies on the fact that the expression

((σ · x) : x 7→ 0 : y 7→ 1)|σx

simplifies to σ : y 7→ 1. You may want to convince yourself that this makes sense.

4.3 Junk data semantics

Most implementations of C will “initialise” variables by letting them inherit whatever junk data
happened to live in the variable’s memory location beforehand.4 This can lead to unpredictable
runtime behaviour. One way of capturing this unpredictability is with the following rule:

((σ1 · x) : x 7→ n, s) ⇓ σ2
(σ1, var x · s) ⇓ (σ2|σ1

x )

This is almost identical to the default-value rule, except we’ve replaced the 0 with a free variable
n. By choosing to instantiate n to 0, we can derive the judgement

(σ,var x · y := x+ 1) ⇓ σ : y 7→ 1

using the exact same proof tree as for the default-value example. But we can also prove the
following:

(σ · x) : x 7→ 5 ⊢ x+ 1 ⇓ 6

((σ · x) : x 7→ 5, y := x+ 1) ⇓ (σ · x) : x 7→ 5 : y 7→ 6

(σ,var x · y := x+ 1) ⇓ σ : y 7→ 6

The resulting semantics is non-deterministic: the final state (if one exists) is not unique. In real-
world terms, this means the program may be observed to behave differently depending on lowerer-
level details, e.g., in the compiler implementation, the hardware, or the runtime environment.

5 Hoare Logic

Because our language has been defined with compositional control structures inspired by struc-
tured programming, we can write a compositional proof calculus for proving properties about
our programs. This is a common type of axiomatic semantics, an alternative to the operational
semantics we have defined earlier.

While scopes were important in previous sections, Hoare logic is usually presented in a setting
where all variables are global. To avoid bogging down the presentation, we’d like to do the same.
Therefore, from now on, we will start pretending that the var construct does not exist, and that
all variables are declared.

Hoare Logic involves proving judgements of the following format:

{φ} s {ψ}
4The situation in C is actually a bit more nuanced than this. Initialisation behaviour depends on the storage

class, and uninitialised variables may contain bit patterns that do not represent values of the intended type. This
may lead to crashing and burning.

6



Here φ and ψ are logical assertions, propositions that may mention variables from the state. The
above judgement, called a Hoare Triple, states that if the program s starts in any state σ that
satisfies the precondition φ and (σ, s) ⇓ σ′, then σ′ will satisfy the postcondition ψ.

Here’s an example of a Hoare triple:

{True}
i := 0;
m := 1;
while i < N do
i := i+ 1;
m := m× i

od
{m = N !}

To prove a Hoare triple, it is undesirable to use the operational semantics directly. We could,
but it gets messy, and requires setting up an induction every time you encounder a while loop.
Instead we shall define a set of rules to prove Hoare triples directly, without appealing to the
operational semantics.

The rule for skip simply states that any condition about the state that was true before skip

was executed is still true afterwards, as this statement does not change the state:

{φ} skip {φ}

The rule for sequential composition states that in order for s1; s2 to move from a precondition
of φ to a postcondition of ψ, then s1 must, if starting from a state satisfying φ, evaluate to a
state satisfying some intermediate assertion α, and s2, starting from α, must evaluate to a state
satisfying ψ.

{φ} s1 {α} {α} s2 {ψ}
{φ} s1; s2 {ψ}

For a conditional to satisfy the postcondition ψ under precondition φ, both branches must satisfy
ψ under the precondition that φ holds and that the condition either holds or does not hold,
respectively:

{φ ∧ e} s1 {ψ} {φ ∧ ¬e} s2 {ψ}
{φ} if e then s1 else s2 fi {ψ}

Seeing as while loops may execute zero times, the precondition φ must remain true after the
while loop has finished. In addition, after the loop has finished, we know that the guard must be
false. Furthermore, because the loop body may execute any number of times, the loop body must
maintain the assertion φ to be true after each iteration. This is called a loop invariant.

{φ ∧ e} s {φ}
{φ} while e do s od {φ ∧ ¬e}

For an assignment statement x := e to satisfy a postcondition φ, the precondition must effectively
state that φ holds if x is replaced with e. Therefore, once the assignment has completed, x will
indeed be replaced with e and therefore φ will hold. Try this on a few simple examples if you are
not convinced:

{φ[x := e]} x := e {φ}
There is one more rule, called the rule of consequence, that we need to insert ordinary logical
reasoning into our Hoare logic proofs, allowing us to change the pre- and post-conditions we have
to prove by way of logical implications:

φ⇒ α {α} s {β} β ⇒ ψ

{φ} s {ψ}

7



This is the only rule that is not directed entirely by syntax. This means a Hoare logic proof
need not look like a derivation tree. Instead we can sprinkle assertions through our program, and
specially note uses of the consequence rule.

Note: An example verification of factorial using Hoare logic is provided in the Week 5 slides.

Appendix A: Semantics of arithmetic expressions

In the above, we left the treatment of arithmetic expressions to the reader’s imagination. This
was to above bogging down the presentation, and because there’s no need at this point to fix the
set of allowed arithmetic expressions. However, you may have noticed that none of the previously
introduced operational semantics for arithmetic expressions fit what we want precisely, because
they were only defined on closed expressions.

Here’s an example of how to set up the big-step operational semantics so that it takes states
into account:

σ ⊢ e1 ⇓ v1 σ ⊢ e2 ⇓ v2
σ ⊢ e1 + e2 ⇓ v1 + v2

σ ⊢ e1 ⇓ v1 σ ⊢ e2 ⇓ v2
σ ⊢ e1 ∗ e2 ⇓ v1 ∗ v2

σ(x) = v

σ ⊢ x ⇓ v σ ⊢ n ⇓ n

n and x in the above stand for numerical constants and variables, respectively. Note that this
is very close to the denotational semantics.

8


