
COMP3161/9164 24T3 Assignment 2
Type Inference for Polymorphic MinHS

Version 1.4.2

Marks : 17.5% of the overall mark

Due date: Monday 18th November 2024, 12:00 PM Sydney time

Overview
In this assignment you will implement type inference for MinHS. The language used in this assignment
differs from the language of Assignment 1 in two respects: it has a polymorphic type system, and it has
aggregate data structures.

The assignment requires you to:

• (100% marks) Implement the type inference algorithm discussed in the lectures for polymorphic
MinHS with sum and product data types;

• (5% bonus) adjust the type inference pass to include various simple syntax extensions from Assign-
ment 1;

• (5% bonus) adjust the type inference pass to allow optional type annotations provided by the user;

Each of these parts is explained in detail below.

The MinHS parser and evaluator are provided for you. You do not have to change anything in any module
other than TyInfer.hs (even for the bonus parts).

Your type inference pass should return the inferred type scheme of the top-level binding, main.
Your assignment will only be tested on correct programs, and will be judged correct if it produces a

correct type for main up to α-renaming of type variables, and reordering of quantifiers.

Please use the Ed forum for questions about this assignment.

Submission
Submit your (modified) TyInfer.hs using the CSE give system, by typing the command

give cs3161 TyInfer TyInfer.hs

or by using the CSE give web interface.

1 Task 1
Task 1 is worth 100% of the marks of this assignment. You are to implement type inference for MinHS with
aggregate data structures. The following cases must be handled:

• the MinHS language of the first task of assignment 1 (without n-ary functions, or lists);

• product types: the 0-tuple (aka the Unit type) and 2-tuples;
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• sum types;

• polymorphic functions

These cases are explained in detail below. The abstract syntax defining these syntactic entities is in Syntax.hs.
You should not need to modify the abstract syntax definition in any way.

Your implementation is to follow the definition of inference rules provided with this assignment. In
particular, you must implement a variables-in-contexts version of Hindley-Milner type inference [1] by
tracking definitions (in addition to declarations) for type variables in the context.

Additional material can be found in the lecture notes on polymorphism, and reference materials [2, 3].
The variables-in-contexts approach you will need to implement is outlined in this assignment specification,
along with inference rules in Figures 1, 2 and 3.

2 Bonus Tasks
These tasks are all optional, and are worth a total of an additional 10%. Marks above 100% are converted
to exam marks, at an exchange rate of 1 to 0.15—for example, a mark of 105% yields 0.75 bonus marks for
the exam.

2.1 Bonus Task 1: Simple Syntax Extensions
This bonus task is worth an additional 5%. In this task, you should implement type inference for multiple
bindings in the one let expression, with the same semantics as the extension task for Assignment 1.

You will need to develop the requisite extensions to the type inference algorithm yourself, but the exten-
sions are very similar to the existing rules.

2.2 Bonus Task 2: User-provided type signatures
This bonus task is worth an additional 5%. In this task you are to extend the type inference pass to accept
programs containing some type information. You need to combine this with the results of your type inference
pass to produce the final type for each declaration. That is, you need to be able to infer correct types for
programs like:

main = let f :: (Int -> Int)
= recfun g x = x;

in f 2;

You must ensure that the type signatures provided are not overly general. For example, the following pro-
gram should be a type error, as the user-provided signature is too general:

main :: (forall ’a. ’a) = 3;

You may assume for simplicity that the user-provided types have distinct type variable names for all
bound / free type variables. Your solution should, for example, support programs such as:

main :: forall ’a. ’a -> ’a + Int = recfun m y =
let g :: forall ’b. ’b -> ’a + ’b = recfun f x = Inl y;
in g 1

where the type variable ’a is in scope for the expression bound to main and appears in the user-provided
type annotating g. All occurrences of ’a within the bound expression reference the same type variable.

3 Algebraic Data Types
This section covers the extensions to the language of the first assignment. In all other respects (except lists)
the language remains the same, so you can consult the reference material from the first assignment for further
details on the language.
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3.1 Product Types
We only have 2-tuples in MinHS, and the Unit type, which could be viewed as a 0-tuple.

Types τ ::= τ * τ
| 1

Expressions e ::= (e, e)
| fst e | snd e
| ()

3.2 Sum Types
Sum types in MinHS follow the presentation in the lectures.

Types τ ::= · · · | τ + τ

Expressions e ::= · · ·
| Inl e
| Inr e
| case e of

Inl x -> e ;
Inr y -> e ;

3.3 Polymorphism
The extensions to allow polymorphism are relatively minor. Three new type forms have been introduced:
the FlexVar t form, the RigidVar t form, and the Forall t e form. FlexVar t represents
a unification variable introduced during type inference. RigidVar t represents a fixed type variable
introduced by a forall-quantifier. Consult Section 4 for more details on the notational conventions used in
this specification and how they relate to the Haskell code. We distinguish between type schemes and other
types:1

Scheme σ ::= forall α. τ
Types τ ::= αF | αR | τ * τ | τ + τ | · · ·

Type inference should return a correctly typed top-level binding for main. For example, consider the fol-
lowing code fragment before and after type inference:

main =
let f = recfun g x = x;
in if f True

then f (Inl 1)
else f (Inr ());

main :: (Int + 1) =
let f = recfun g x = x;
in if f True

then f (Inl 1)
else f (Inr ());

4 Notational Conventions
In this document, we will use a number of conventions and conveniences to streamline the presentation
detailed in Table 1.

1Here, and elsewhere in the spec we use overlines to mean “sequence of”. So, e.g., σ is a sequence of type schemes.
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Concept Specification Notation Haskell Notation

Flexible Type Variable αF, βF, ρF, . . . FlexVarα
Rigid Type Variable αR, βR, ρR, . . . RigidVarα
Flexible Type Variable Declaration α α:=HOLE
Flexible Type Variable Definition α := τ α:=Defn τ
Rigid Type Variable Substitution τ [αR := τ ′] substRigid (α =: τ ′) τ
Flexible Type Variable Substitution τ [αF := τ ′] substFlex (α =: τ ′) τ
Term Variable Entry x : σ TermVar x σ

Table 1: Notations and Conventions in this Specification vs. Haskell code for Assignment

Type variable names are ranged over by lowercase greek letters. We distinguish between flexible and
rigid type variables by superscripting such names with F and R, respectively.

Declarations and definitions for flexible type variables appear in typing contexts, see Section 5.1 for the
full grammar of contexts.

Substitution for type variables occurring in types is explained in Section 6. Since there are two kinds
of type variables: flexible ones introduced during type inference, and rigid ones bound by ∀-quantifiers,
we have two kinds of substitution operation depending on which type variables we wish to replace. These
are called substFlex and substRigid in the Subst.hs Haskell module, substituting for flexible and
rigid type variables, respectively.

5 Type Inference Rules
The type inference are rules presented in Figure 3 using the judgement form:

Γ1 ⊢ e
INF
==⇒ τ ⊣ Γ2

where blue components on the left of INF
==⇒ can be viewed as inputs to the algorithm, while red components

on the right of INF
==⇒ can be viewed as outputs. The type inference rules directly encode an algorithm with

explicit inputs and outputs. Inputs to the conclusion are inputs to the first premise (by convention the left-
most premise of a rule). The outputs of a premise can be used as inputs to subsequent premises. The left-hand
typing environment and expression are inputs to any rule. The right-hand typing environment and the type
are outputs. The judgement encodes a substitution from type variables in the input typing environment to
types in the output typing environment.

Such an algorithm has type signature:

inferExp :: Gamma -> Exp -> TC (Type, Gamma)

The goal is to infer the type of the top-level binding by inferring the types for all its sub-expressions, and
propagating this information upwards through the program source tree. You should replace the unannotated
top-level binding (i.e. main) with an explicitly typed equivalent.

5.1 Contexts for Polymorphism, Contexts for Type Inference
To support polymorphism and enable type inference, the grammar for typing contexts Γ is extended to track
unification or flexible type variables, and their instantiation with a concrete type, if any. They are “flexible”
in the sense that they are introduced by the type inference algorithm in order to establish constraints between
types.

A context tracks both declarations and definitions of flexible type variables. A declaration is denoted
by α in this document, or α:=HOLE in Haskell2 and declares α to be the name of a flexible type variable
which has not yet been instantiated with a concrete type. On the other hand, a definition is denoted by α :=τ
for some type variable name α and type τ . The full grammar3 for contexts looks like this:

Γ ::= ϵ | Γ · x : σ | Γ · α | Γ · α := τ | Γ · •
2Again, Table 1 summarises these conventions.
3The • is explained later.
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We distinguish a context from a suffix ∆ which is a list containing only type variable declarations or defini-
tions:

∆ ::= [] | α :: ∆ | α := τ :: ∆

5.2 Generalisation
Generalisation is the process of introducing zero or more ∀ quantified type variables on a type to form a type
scheme. This process must be minimal in the sense that it generalises only those type variables relevant for
the current type inference problem. The judgement form is:

Γ1 ⊢ e
GEN
==⇒ σ ⊣ Γ2

where from input context Γ1 and expression e the algorithm infers the type scheme σ and output context Γ2.
There is only one rule for generalisation given by:

GEN

Γ1 · • ⊢ e
INF
==⇒ τ ⊣ Γ2 · • ·∆ σ = gen(rev(∆), τ, [])

Γ1 ⊢ e
GEN
==⇒ σ ⊣ Γ2

where rev(∆) reverses the elements in the suffix ∆ 4.
The algorithm keeps track of relevant type variables by using markers, denoted by •, which split the

context up into localities. A type variable occurring to the right of a marker can be safely generalised in a
type scheme because the surrounding context does not depend on it. In the GEN rule, we can generalise τ
over ∆ (which contains only type variable declarations and definitions) to form the type scheme σ:

gen([], τ, β) ≜ forall β. τ

gen(α :: ∆, τ, β) ≜ gen(∆, τ [αF := αR], α :: β)

gen(α := τ ′ :: ∆, τ, β) ≜ gen(∆, τ [αF := τ ′], β)

Type variables can gain more global relevance by moving their declarations to the left of markers. Such
a movement is irreversible, once a type variable has moved beyond a marker it can never be moved back “to
the right”.

To keep type inference tractable, generalisation is performed only on let-bindings and the top-level main
binding. Recursive functions are not generalised. Pay close attention to the premises of the LET and PRO-
GRAM typing rules in Figure 3 to see where generalisation should be used.

5.3 Unification
Solving type inference problems depends on solving unification problems between types. Just like the type
inference rules, unification can be expressed algorithmically as a transformation on the typing context. Some
of these rules were discussed in lectures and are repeated in Figure 1 (except a few structural and symmetric
rules — fill in the details!) and take the following form:

Γ1 ⊢ τ1 ∼ τ2
UNI
==⇒ Γ2

where, again, inputs are blue and outputs are red.

4Reversing ∆ is required by our definition of gen(−,−,−) because we need to process more local type variables first in case they
depend on later type variables appearing in ∆. You can avoid the reversal if you first build a simultaneous substitution (Section 6) out
of ∆.
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Γ1 ⊢ τ1 ∼ τ2
UNI
==⇒ Γ2

REFL

Γ1 ⊢ αF ∼ αF
UNI
==⇒ Γ1

ARROW

Γ1 ⊢ τ1 ∼ τ ′1
UNI
==⇒ Γ2 Γ2 ⊢ τ2 ∼ τ ′2

UNI
==⇒ Γ3

Γ1 ⊢ τ1 → τ2 ∼ τ ′1 → τ ′2
UNI
==⇒ Γ3

INST

τ not a flexvar Γ1 | [ ] ⊢ α ∼ τ
INST
==⇒ Γ2

Γ1 ⊢ αF ∼ τ
UNI
==⇒ Γ2

DEFN
α ̸= β

Γ1 · α ⊢ αF ∼ βF
UNI
==⇒ Γ1 · α := βF

SUBST

Γ1 ⊢ αF[ρF := τ ] ∼ βF[ρF := τ ]
UNI
==⇒ Γ2

Γ1 · ρ := τ ⊢ αF ∼ βF
UNI
==⇒ Γ2 · ρ := τ

SKIP-TY

ρ ̸= α ρ ̸= β Γ1 ⊢ αF ∼ βF
UNI
==⇒ Γ2

Γ1 · ρ ⊢ αF ∼ βF
UNI
==⇒ Γ2 · ρ

SKIP-MARK

Γ1 ⊢ αF ∼ βF
UNI
==⇒ Γ2

Γ1 · • ⊢ αF ∼ βF
UNI
==⇒ Γ2 · •

SKIP-TM

Γ1 ⊢ αF ∼ βF
UNI
==⇒ Γ2

Γ1 · x : σ ⊢ αF ∼ βF
UNI
==⇒ Γ2 · x : σ

Figure 1: Unification Rules

5.4 Instantiation
The unification judgement depends on instantiation, that is, solving an equation involving a flexible type
variable (unification variable) and any type which is not a flexible type variable. This judgement (Figure 2)
takes the following form:

Γ1 | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2

The algorithm simplifies the problem by moving through the context, similar to the strategy employed
during unification for the case of unifying two flexible type variables. Some points worth noting:

• FTV (τ ) computes the set of names of flexible type variables occurring in τ ;

• For DEFN, we must check that the no flexible type variables occurring in τ have the name α. This
condition is known as the occurs check and prevents cyclic dependencies which are unsound;

• Instantiation accumulates a list ∆ recording the type variable dependencies of τ which must be given
more global relevance in order to solve for α;

• For DEFN, the dependencies of τ are placed to the right of the definition of α because by setting α:=τ ,
it also depends on type variables in ∆;

6 Substitution
Substitutions are implemented as an abstract data type, defined in Subst.hs. Subst is an instance of the
Monoid type class, which is defined in the standard library as follows:

class Monoid a where
mappend :: a -> a -> a -- also written as the infix operator <>
mempty :: a
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Γ1 | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2

DEFN
α /∈ FTV (τ)

Γ1 · α | ∆ ⊢ α ∼ τ
INST
==⇒ Γ1 ·∆ · α := τ

DEPEND

β ̸= α β ∈ FTV (τ) Γ1 | β :: ∆ ⊢ α ∼ τ
INST
==⇒ Γ2

Γ1 · β | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2

SUBST

Γ1 ·∆ ⊢ αF[βF := τ ′] ∼ τ [βF := τ ′]
UNI
==⇒ Γ2

Γ1 · β := τ ′ | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2 · β := τ ′

SKIP-TY

β ̸= α β /∈ FTV (τ) Γ1 | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2

Γ1 · β | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2 · β

SKIP-TM

Γ1 | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2

Γ1 · x : σ | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2 · x : σ

SKIP-MARK

Γ1 | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2

Γ1 · • | ∆ ⊢ α ∼ τ
INST
==⇒ Γ2 · •

Figure 2: Algorithmic instantiation rules

For the Subst instance, mempty corresponds to the empty substitution, and mappend is substitution
composition. That is, applying the substitution a <> b is the same as applying a and b simultaneously. It
should be reasonably clear that this instance obeys the monoid laws:

mempty <> x == x -- left identity
x <> mempty == x -- right identity
x <> (y <> z) == (x <> y) <> z -- associativity

It is also commutative (x <> y == y <> x) assuming that the substitutions are disjoint (i.e that dom(x)∩
dom(y) = ∅). In the type inference algorithm, your substitutions are all applied in order and thus should be
disjoint, therefore this property should hold.

You can use this <> operator to combine multiple substitutions into a single substitution; however, there
should be little need to use anything more complicated than single substitutions for this algorithm.

You can construct a singleton substitution, which replaces one variable, with the =: operator, so the sub-
stitution ("a" =: FlexVar "b") <> ("b" =: FlexVar "c") using substFlex is a sub-
stitution which renames all flexible type variables with name a or b with the name c.

The Subst module also includes a variety of functions for running substitutions on types and expres-
sions for both rigid and flexible type variable replacement. In particular, the module provides two functions
for expressions and types respectively, for substitution of type variables:

-- | Perform substitution on rigid type variables.
substRigid :: Subst -> Type -> Type
-- | Perform substitution on flexible type variables.
substFlex :: Subst -> Type -> Type

and similar for Exp. You can use these functions for implementing some of the algorithimic rules.

7 Errors and Fresh Names
Thus far, the following type signature would be sufficient for implementing our type inference function:

inferExp :: Gamma -> Exp -> (Type, Gamma)

Unification is a partial function, however, so we want a principled way to handle the error cases, rather than
just bail out with error calls.

To achieve this, we’ll adjust the basic, pure signature for type inference to include the possibility of a
TypeError:
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Γ1 ⊢ e
INF
==⇒ τ ⊣ Γ2

VAR
x : ∀αi. τ ∈ Γ

Γ ⊢ x
INF
==⇒ τ [αRi := βFi ] ⊣ Γ · βi

βi fresh

INT
n an integer

Γ ⊢ n
INF
==⇒ Int ⊣ Γ

CON
conType(k) = ∀αi. τ

Γ ⊢ Con k
INF
==⇒ τ [αRi := βFi ] ⊣ Γ · βi

βi fresh

PRIM
primOpType(o) = ∀αi. τ

Γ ⊢ Prim o
INF
==⇒ τ [αRi := βFi ] ⊣ Γ · βi

βi fresh

APP

Γ1 ⊢ e1
INF
==⇒ τ1 ⊣ Γ2 Γ2 ⊢ e2

INF
==⇒ τ2 ⊣ Γ3 Γ3 · α ⊢ τ1 ∼ τ2 → αF

UNI
==⇒ Γ4

Γ1 ⊢ Apply e1 e2
INF
==⇒ αF ⊣ Γ4

α fresh

IF-THEN-ELSE

Γ1 ⊢ e
INF
==⇒ τ ⊣ Γ2 Γ2 ⊢ τ ∼ Bool

UNI
==⇒ Γ3

Γ3 ⊢ et
INF
==⇒ τt ⊣ Γ4 Γ4 ⊢ ef

INF
==⇒ τf ⊣ Γ5 Γ5 ⊢ τt ∼ τf

UNI
==⇒ Γ6

Γ1 ⊢ If e et ef
INF
==⇒ τt ⊣ Γ6

CASE

Γ1 ⊢ e
INF
==⇒ τ ⊣ Γ2 Γ2 · α · β ⊢ τ ∼ αF + βF

UNI
==⇒ Γ3

Γ3 · x : αF ⊢ e1
INF
==⇒ τ1 ⊣ Γ4 · x : αF ·∆ Γ4 ·∆ · y : βF ⊢ e2

INF
==⇒ τ2 ⊣ Γ5 · y : βF ·∆′

Γ5 ·∆′ ⊢ τ1 ∼ τ2
UNI
==⇒ Γ6

Γ1 ⊢ Case e x.e1 y.e2
INF
==⇒ τ1 ⊣ Γ6

α, β fresh

RECFUN

Γ1 · α · β · x : αF · f : βF ⊢ e
INF
==⇒ τ ⊣ Γ2 · x : αF · f : βF ·∆ Γ2 ·∆ ⊢ βF ∼ αF → τ

UNI
==⇒ Γ3

Γ1 ⊢ Recfun f.x.e
INF
==⇒ βF ⊣ Γ3

α, β fresh

LET

Γ1 ⊢ e1
GEN
==⇒ σ ⊣ Γ2 Γ2 · x : σ ⊢ e2

INF
==⇒ τ ⊣ Γ3 · x : σ ·∆

Γ1 ⊢ Let e1 x.e2
INF
==⇒ τ ⊣ Γ3 ·∆

Γ1 ⊢ p
INF PROG
=====⇒ σ ⊣ Γ2

PROGRAM

Γ1 ⊢ e
GEN
==⇒ σ ⊣ Γ2

Γ1 ⊢ Program e
INF PROG
=====⇒ σ ⊣ Γ2

Figure 3: Algorithmic Type Inference Rules for MinHS expressions and programs
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inferExp :: Gamma -> Exp -> Either TypeError (Type, Gamma)

Even this, though, is not sufficient, as we cannot generate fresh, unique type variable names for use as
flexible/unification variables:

freshId :: Id -- it is impossible for fresh to return a different
freshId = ? -- value each time!

To solve this problem, we could pass an (infinite) list of unique names around our program, and fresh
could simply take a name from the top of the list, and return a new list with the name removed:

fresh :: [Id] -> ([Id],Id)
fresh (x:xs) = (xs,x)

This is quite awkward though, as now we have to manually thread our list of identifiers throughout the entire
inference algorithm:

inferExp :: Gamma -> Exp -> [Id] -> Either TypeError ([Id], (Type, Gamma))

To resolve this, we bundle both the [Id] state transformer and the Either TypeError x error handling
into one abstract type, called TC (defined in TCMonad.hs)

newtype TC a = TC ([Id] -> Either TypeError ([Id], a))

One can think of TC a abstractly as referring to a stateful action that will, if executed, return a value of type
a, or throw an exception.

As the name of the module implies, TC is a Monad, meaning that it exposes two functions (return and
>>=) as part of its interface.

return :: a -> TC a
return = ...
(>>) :: TC a -> TC b -> TC b
a >> b = a >>= const b
(>>=) :: TC a -> (a -> TC b) -> TC b
a >>= b = ...

The function return is, despite its name, just an ordinary function which lifts pure values into a TC action
that returns that value. The function (>>) (read then), is a kind of composition operator, which produces a
TC action which runs two TC actions in sequence, one after the other, returning the value of the last one to
be executed. Lastly, the function (>>=), more general than (>>), allows the second executed action to be
determined by the return value of the first.

The TCMonad.hs module also includes a few built-in actions:

typeError :: TypeError -> TC a -- throw an error
freshId :: TC Id -- return a fresh type variable name

Haskell includes special syntactic sugar for monads, which allow for programming in a somewhat imperative
style. Called do notation, it is simple sugar for (>>) and (>>=).

do e -- e
do e; v -- e >> do v
do p <- e; v -- e >>= \p -> do v
do let x = y; v -- let x = y in do v

This lets us write unification and type inference quite naturally. A simple example of the use of the TC
monad is already provided to you, the specialise function, which takes a type with some number of
quantifiers, and replaces all quantifiers with fresh variables (very useful in the type inference cases for
variables, constructors, and primops):

specialise :: Scheme -> TC (Type, Suffix)
specialise (Forall xs t) =

do ids <- freshForall xs
return (S.substRigid (S.fromList (map (second FlexVar) ids)) t

, map (flip (,) HOLE . snd) ids)
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To run a TC action in your top level infer function, the runTC function can be used:

runTC :: TC a -> Either TypeError a

Please note: This function runs the TC action with the same source of fresh names each time! Using it more
than once in your program is not likely to give correct results.

8 Program structure
A program in MinHS may evaluate to any non-function type, including an aggregate type. This is a valid
MinHS program:

main = (1,(InL True, False));

which can be elaborated to the following type:

main :: forall ’t. (Int * ((Bool + ’t) * Bool))
= (1,(InL True,False));

8.1 Type information
The most significant change to the language of assignment 1 is that the parser now accepts programs without
any type information. Type declarations are not compulsory! Unless you are attempting the bonus parts of
the assignment, you can assume that no type information will be provided in the program.

You can view the type information after your pass using --dump type-infer.

9 Implementing Type Inference
You are required to implement the function infer. Some stub code has been provided for you, along with
some type declarations, and the type signatures of useful functions you may wish to implement. You may
change any part of TyInfer.hs you wish, as long as it still provides the function infer, of the correct
type. The stub code is provided only as a hint, you are free to ignore it.

10 Testing
Your assignments will be autotested rigorously. You are encouraged to autotest yourself. MinHS comes
with a tester script, and you can add your own tests to this. Your assignment will be tested by comparing the
output Program of your infer function (not the output of tyinf --dump type-infer) against the
expected output Program. Your solution must be α-equivalent to the expected solution.

Much like the previous assignment, you are given a suite of tests for Task 1. Unlike the previous
assignment, the tests do not specify the expected results—note the lack of .out files. Beware: unless you
add .out specifying the expected result yourself, the tests will report success no matter what you return.

It is up to you to write your own tests for the extension tasks. Any .out files and additional tests you
write are for your own benefit – you will not submit them for marking.

In this assignment we make no use of the later phases of the compiler.

11 Building MinHS
Building MinHS is exactly the same as in Assignment 1.

To run the type inference pass and inspect its results, for cabal users type:

$ cabal run tyinf -- --dump type-infer foo.mhs

Users of stack should type:

$ stack exec tyinf -- --dump type-infer foo.mhs

You may wish to experiment with some of the debugging options to see, for example, how your program
is parsed, and what abstract syntax is generated. Many --dump flags are provided, which let you see the
abstract syntax at various stages in the compiler.
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12 Late Penalty
You may submit up to five days (120 hours) late. Each day of lateness corresponds to a 5% reduction of your
total mark. For example, if your assignment is worth 88% and you submit it two days late, you get 78%. If
you submit it more than five days late, you get 0%.

Course staff cannot grant assignment extensions—if you need an extension, you have to apply for special
consideration through the standard procedure. More information here: https://www.student.unsw.
edu.au/special-consideration

13 Plagiarism
Many students do not appear to understand what is regarded as plagiarism. This is no defense. Before
submitting any work you should read and understand the UNSW plagiarism policy https://student.
unsw.edu.au/plagiarism.

All work submitted for assessment must be entirely your own work. We regard unacknowledged
copying of material, in whole or part, as an extremely serious offence. In this course submission of any work
derived from another person, or solely or jointly written by and or with someone else, without clear and
explicit acknowledgement, will be severely punished and may result in automatic failure for the course and
a mark of zero for the course. Note this includes including unreferenced work from books, the internet, etc.

Do not provide or show your assessable work to any other person. Allowing another student to
copy from you will, at the very least, result in zero for that assessment. If you knowingly provide or show
your assessment work to another person for any reason, and work derived from it is subsequently submitted
you will be penalized, even if the work was submitted without your knowledge or consent. This will apply
even if your work is submitted by a third party unknown to you. You should keep your work private until
submissions have closed.

If you are unsure about whether certain activities would constitute plagiarism, ask us before engaging in
them!
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