COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

COMP2521 25T3
Graphs (I11)
Graph Problems

Sim Mautner

cs2521@cse.unsw.edu.au

cycle checking
connected components
hamiltonian paths/circuits

eulerian paths/circuits

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Graph Problems

Basic graph problems:
e |sthere a cycle?
e How many connected components are there?
e Is there a simple path/cycle that passes through all vertices?
e Is there a path/cycle that passes through each edge exactly once?

COMP2521
25T3

Cycle

Checking
Attempt 1
Attempt 2
Solution
Analysis

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Cycle Checking

A cycle is a path of length > 2
where the start vertex = end vertex
and no edge is used more than once

0090
09‘0

This graph has three distinct cycles:
1-2-5-1, 2-5-6-2, 1-2-6-5-1

(two cycles are distinct if they have different sets of edges)

COMP2521
25T3

Cycle
Checking
Attempt 1
Attempt 2
Solution
Analysis

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Cycle Checking

Attempt 1

How to check if a graph has a cycle?

Idea:
e Perform a DFS, starting from any vertex

e During the DFS, if the current vertex has an edge to an already-visited
vertex, then there is a cycle

O °0 ()
(&) QAG

tests/cyclel. txt

hasCycle(G):
Input: graph G
Output: true if G has a cycle, false otherwise

pick any vertex v in G

create visited array, initialised to false
return dfsHasCycle(G, v, visited)

dfsHasCycle(G, v, visited):
visited[v] = true

for each neighbour w of vin G:
if visited[w] = true:
return true
else if dfsHasCycle(G, w, visited):
return true

return false

«aO>» «F»r « =>»

<

COMP2521
25T3

Cycle
Checking
Attempt 1
Attempt 2
Solution
Analysis

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Cycle Checking

Attempt 1

Problem:

e The algorithm does not check whether the neighbour w is the vertex that
it just came from

e Therefore, it considers moving back and forth along a single edge to be a
cycle (e.g., 0-1-0)

/>
<«

tests/cycle2.txt

COMP2521
25T3

Cycle
Checking
Attempt 1
Attempt 2
Solution
Analysis

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Cycle Checking

Attempt 2

Improved idea:
e Perform a DFS, starting from any vertex
o Keep track of previous vertex during DFS

e During the DFS, if the current vertex has an edge to an already-visited
vertex which is not the previous vertex, then there is a cycle

hasCycle(G):
Input: graph G
Output: true if G has a cycle, false otherwise

pick any vertex v in G

create visited array, initialised to false
return dfsHasCycle(G, v, v, visited)

dfsHasCycle(G, v, prev, visited):
visited[v] = true

for each neighbour w of v in G:
if w= prev:
continue
if visited[w] = true:
return true
else if dfsHasCycle(G, w, v, visited):
return true

return false

«aO>» «F»r « =>»

<

Attempt 2

Problem:

e The algorithm only checks one connected component

® The connected component that the initially chosen vertex belongs to

eﬂoe
09‘0

tests/cycle3. txt

«aO>» «F»r « =>»

<

it
-

DA

COMP2521
25T3

Cycle

Checking
Attempt 1
Attempt 2
Solution
Analysis

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Cycle Checking

Working Solution

Working idea:

Perform a DFS, starting from any vertex
Keep track of previous vertex during DFS

During the DFS, if the current vertex has an edge to an already-visited
vertex which is not the previous vertex, then there is a cycle

After the DFS, if any vertex has not yet been visited, perform another
DFS, this time starting from that vertex

Repeat until all vertices have been visited

hasCycle(G):
Input: graph G

Output: true if G has a cycle, false otherwise

create visited array, initialised to false
for each vertex v in G:
if visited[v] = false:

if dfsHasCycle(G, v, v, visited):
return true

return false

dfsHasCycle(G, v, prev, visited):
visited[v] = true

for each neighbour w of v in G:

if w = prev:
continue

if visited[w] = true:
return true

else if dfsHasCycle(G, w, v, visited):
return true

return false

Analysis for adjacency list representation:

e Algorithm is a slight modification of DFS
e Afull DFS traversal is O(V + E)

® Thus, worst-case time complexity of cycle checking is O(V + E)

«aO>» «F»r « =>»

<

it
-

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Connected Components

A connected component
is @ maximally connected subgraph

For example, this graph has three connected components:

eﬂeeo

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Connected Components

DEFINITIONS:

subgraph
a subset of vertices and edges of original graph

connected subgraph
there is a path between every pair of vertices in the subgraph

maximally connected subgraph
no way to include more edges/vertices from original graph into the subgraph
such that subgraph is still connected

Connected
Components

Problems:

How many connected components are there?

Are two vertices in the same connected component?

«aO>» «F»r « =>»

<

DA

COMP2521

2513 Connected Components

Cycle

Checking Goal:

i e Compute an array which indicates which connected component each
Hamiltonian vertex iS in

e Cre e Let this array be called componentOf

e ® componentOf[v] contains the component number of vertex v

Gifia e For example:

Problems

00990

ol NI [81 [[51 [el [71 [8]
0 0 1 1 0 1 1 2 2

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Connected Components

Idea:
e Choose a vertex and perform a DFS starting at that vertex
¢ During the DFS, assign all vertices visited to component 0

e After the DFS, if any vertex has not been assigned a component,
perform a DFS starting at that vertex

® During this DFS, assign all vertices visited to component 1

e Repeat until all vertices are assigned a component, increasing the
component number each time

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Connected Components

components(G):
Input: graph G
Output: componentOf array

create componentOf array, initialised to -1

compNo = 0
for each vertex v in G:
if componentOf[v] = -1:
dfsComponents (G, v, componentOf, compNo)
compNo = compNo + 1

return componentOf

dfsComponents (G, v, componentOf, compNo):
componentOf[v] = compNo
for each neighbour w of v in G:
if componentOf[w] = -1:
dfsComponents (G, w, componentOf, compNo)

Connected
Components

Analysis for adjacency list representation:

e Algorithm performs a full DFS, which is O(V + E)

«O>» «F>r «=>»

<

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Connected Components

Suppose we frequently need to answer the following questions:
e How many connected components are there?
e Are v and w in the same connected component?
e |s there a path between v and w?
Note: The last two questions are actually equivalent in an undirected graph.

Connected
Components

Solution:

e Cache the components array in the graph struct
struct graph {

s

int *cc; // componentOf array

«aO>» «F»r « =>»

<

int nC; // number of connected components

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Connected Components

This allows us to answer the questions very easily:

// How many connected components are there?
int numComponents(Graph g) {

}

return g->nC;

// Are v and w in the same connected component?
bool inSameComponent(Graph g, Vertex v, Vertex w) {

}

// Is there a path between v and w?

return g->cc[v] == g->cclw];

bool hasPath(Graph g, Vertex v, Vertex w) {

}

return g->cc[v] == g->cclw];

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Connected Components

However, this information needs to be maintained as the graph changes:
¢ |nserting an edge may reduce nC
® [f the endpoint vertices were in different components
e Removing an edge may increase nC

¢ [f the endpoint vertices were in the same component and there is no other
path between them

Hamiltonian
Path/Circuit

A Hamiltonian path is
a path that includes each vertex exactly once

A Hamiltonian circuit is
a cycle that includes each vertex exactly once

«aO>» «F»r « =>»

<

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Hamiltonian Path and Circuit

Named after
Irish mathematician, astronomer and physicist
Sir William Rowan Hamilton (1805-1865)

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Hamiltonian Path and Circuit

Consider the following graph:

—0

Hamiltonian path

Q@@
OO

Hamiltonian circuit

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Hamiltonian Path

How to check if a graph has a Hamiltonian path?

Idea:
e Brute force

e Use DFS to check all possible paths
® Recursive DFS is perfect, as it naturally allows backtracking

e Keep track of the number of vertices left to visit
e Stop when this number reaches 0

Hamiltonian
Path/Circuit

hasHamiltonianPath(G):
Input:

graph G

Output: true if G has a Hamiltonian path
false otherwise

create visited array, initialised to false
for each vertex v in G:

if dfsHamiltonianPath(G, v, visited, #vertices(G))
return true
return false

«aO>» «F»r « =>»

<

DA

Hamiltonian
Path/Circuit

visited[v] =

dfsHamiltonianPath(G, v, visited, numVerticesLeft):
= true
numVerticesLeft

numVerticesLeft - 1
if numVerticeslLeft = 0
return true

for each neighbour w of v in G:
if visited[w] = false:

visited[v]
return false

if dfsHamiltonianPath(G, w, visited,
return true

false

numVerticesLeft):

«aO>» «F»r « =>»

<

it
-

Hamiltonian
Path/Circuit

Why set visited[v] to false at the end of dfsHamiltonianPath?

«O>» «F>r «=>»

<

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Hamiltonian Circuit

How to check if a graph has a Hamiltonian circuit?
e Similar approach as Hamiltonian path
e Don't need to try all starting vertices

e After a Hamiltonian path is found, check if the final vertex is adjacent to
the starting vertex

O Hamiltonian Circuit
Cycle hasHamiltonianCircuit(G):
Checking Input: graph G
Connected Output: true if G has a Hamiltonian circuit
Components false otherwise
Hamiltonian
Path/Circuit if #vertices(G) < 3:
Eulaer return false
Path/Circuit
Other create visited array, initialised to false
Problems return dfsHamiltonianCircuit(G, 0, visited, #vertices(G))

dfsHamiltonianCircuit(G, v, visited, numVerticesLeft):
visited[v] = true
numVerticesLeft = numVerticesLeft - 1

if numVerticesLeft = 0 and adjacent(G, v, 0):
return true

for each neighbour w of v in G:
if visited[w] = false:
if dfsHamiltonianCircuit(G, w, visited, numVerticeslLeft):
return true

visited[v] = false
return false

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Hamiltonian Path and Circuit

Analysis

Analysis:
e Worst-case time complexity: O(V!)

e There are at most V! paths to check (~ v27V(V/e)V by Stirling’s
approximation)

e There is no known polynomial time algorithm, so the Hamiltonian path
problem is NP-hard

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Eulerian Path and Circuit

An Eulerian path is

a path that visits each edge exactly once

An Eulerian circuit is

an Eulerian path that starts and ends at the same vertex

Eulerian path:
4-2-0-1-3-0

Eulerian circuit:
4-2-0-1-3-4

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Eulerian Path and Circuit
Background

Problem is named after
Swiss mathematician, physicist, astronomer, logician and engineer
Leonhard Euler (1707-1783)

Eulerian
Path/Circuit

Problem was introduced by Euler while trying to solve the
Seven Bridges of Konigsberg problem in 1736.

Is there a way to cross all the bridges exactly once on a walk through the
town?

«40>» «F)>r « =)»

<

>

DA

Eulerian
Path/Circuit

This is a graph problem:
vertices represent pieces of land
edges represent bridges

North bank

East bank
South bank

Bridges as schematic

Bridges as graph

«40>» «F)>r « =)»

<

>

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Eulerian Path and Circuit

How to check if a graph has an Eulerian path or circuit?
Can use the following theorems:

A graph has an Eulerian path if and only if
exactly zero or two vertices have odd degree,
and all vertices with non-zero degree belong to the same connected
component

A graph has an Eulerian circuit if and only if
every vertex has even degree,
and all vertices with non-zero degree belong to the same connected
component

COMP2521

i Eulerian Path and Circuit

Cycle
Checking

Which of these graphs have an Eulerian path? How about an Eulerian circuit?

Path/Circuit
Eulerian
Path/Circuit
Other
Problems

Eulerian
Path/Circuit

u“

Why
all vertices with non-zero degree belong to the same connected
component”?

@

«0O0>» «Fr «=» «

it
-

DA

hasEulerianPath(G):
Eulerian InPUt:
Path/Circuit

graph G

false otherwise

Output: true if G has an Eulerian path
numOddDegree

=0
for each vertex v in G:

if degree(G, v) is odd:
numOddDegree

return (numOddDegree

eulerConnected (@)

numOddDegree + 1
0 or numOddDegree

2) and

«0O0>» «Fr «=» «

it
-

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Eulerian Path

eulerConnected(G):
Input: graph G
Output: true if all vertices in G with non-zero degree
belong to the same connected component
false otherwise

create visited array, initialised to false

for each vertex v in G:
if degree(G, v) > 0:
dfsRec(G, v, visited)
break

for each vertex v in G:
if degree(G, v) > 0 and visited[v] = false:

return false

return true

Eulerian
Path/Circuit

hasEulerianCircuit(G):
Input:

graph G
Output: true if G has an Eulerian circuit
false otherwise
for each vertex v in G:
if degree(G, v) is odd:

return false

return eulerConnected(G)

«aO>» «F»r « =>»

<

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Eulerian Path and Circuit

Analysis

Analysis for adjacency list representation:
¢ Finding degree of every vertex is O(V + F)
e Checking connectivity requires a DFS which is O(V + E)
e Therefore, worst-case time complexity is O(V + E)

So unlike the Hamiltonian path problem, the Eulerian path problem can be
solved in polynomial time.

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

Other Graph Problems

Tractable and Intractable

Many graph problems are intractable - that is,
there is no known “efficient” algorithm to solve them.

In this context, “efficient” usually means polynomial time.

A tractable problem is one that is known to have a
polynomial-time solution.

tractable

what is the shortest path
between two vertices?

intractable

how about the longest path?

«O>» «F>r «=>»

<

DA

tractable

what is the shortest path
between two vertices?

does a graph contain a clique?

intractable
how about the longest path?

what is the largest clique?

«aO>» «F»r « =>»

<

it
-

DA

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

tractable

what is the shortest path
between two vertices?

does a graph contain a clique?

given two colors, is it possible to
colour every vertex in a graph such
that no two adjacent vertices are the
same colour?

Other Graph Problems

Tractable and Intractable

intractable

how about the longest path?

what is the largest clique?

what about three colours?

COMP2521
25T3

Cycle
Checking

Connected
Components

Hamiltonian
Path/Circuit

Eulerian
Path/Circuit

Other
Problems

tractable

what is the shortest path
between two vertices?

does a graph contain a clique?

given two colors, is it possible to
colour every vertex in a graph such
that no two adjacent vertices are the
same colour?

does a graph contain an Eulerian path?

Other Graph Problems

Tractable and Intractable

intractable

how about the longest path?

what is the largest clique?

what about three colours?

how about a Hamiltonian path?

O Other Graph Problems

Bonus Round!

Cycle
Checking

Graph isomorphism:
Can we make two given graphs identical by renaming vertices?

	Cycle Checking
	Attempt 1
	Attempt 2
	Solution
	Analysis

	Connected Components
	Hamiltonian Path/Circuit
	Eulerian Path/Circuit
	Other Problems

