
COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

COMP2521 25T2
Tries

Sim Mautner
cs2521@cse.unsw.edu.au



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Motivation

Many applications require
searching through a set of strings

with a pattern

Examples:
Autocomplete
Predictive text

Approximate string matching
Spell checking



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Motivation

Autocomplete



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Motivation

Predictive text

For example, pressing “4663”
can be interpreted as the word
good, home, hood or hoof



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Motivation

How can we implement a set of strings
using data structures covered so far?

AVL tree
Performance: O(log n) worst case

Hash table
Performance: O(1) average case



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Motivation

AVL trees and hash tables are efficient, but…

…they are not efficient when searching for a pattern

Possible solution: tries



COMP2521
25T2

Motivation

Tries
Representation

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Tries

A trie…
• is a tree data structure
• used to represent a set of strings

• e.g., all the distinct words in a document, a dictionary, etc.
• we will call these strings keys or words

• supports string matching queries in O(m) time
• where m is the length of the string being searched for

Note: the word trie comes from retrieval, but pronounced as “try” not “tree”



COMP2521
25T2

Motivation

Tries
Representation

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Tries

Example:

Keys in
the trie:

ace
aces
ape
apes
app

apply
early
earth
east

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t



COMP2521
25T2

Motivation

Tries
Representation

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Tries

Important features of tries:
• Each link represents an individual character
• A key is represented by a path in the trie
• Each node can be tagged as a “finishing” node

• A “finishing” node marks the end of a key
• Each node may contain data associated with key
• Unlike a search tree, the nodes in a trie do not store their associated key

• Instead, keys are implicitly defined by their position in the trie



COMP2521
25T2

Motivation

Tries
Representation

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Representation

Assuming alphabetic strings:

#define ALPHABET_SIZE 26

struct node {
struct node *children[ALPHABET_SIZE];
bool finish; // marks the end of a key
Data data; // data associated with key

};



COMP2521
25T2

Motivation

Tries
Representation

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Representation
Example

Consider this trie:

s

e

a l

l

s

h

e



COMP2521
25T2

Motivation

Tries
Representation

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Representation
Example

Concrete representation:
(f = finishing node)

s

e h

a l e

f
l

f

s

f



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Insertion

Process for insertion:
• Start at the root
• For each character c in the key (from left to right):

• If there is no child node corresponding to c, create one
• Descend into the child node corresponding to c

• Mark the resulting node as a finishing node and insert data (if any)



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Insertion
Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Insertion
Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Insertion
Pseudocode

Recursive method:
trieInsert(t, key, data):

Input: trie t
key of length m and associated data

Output: t with key and data inserted

if t is empty:
t = new node

if m = 0:
t->finish = true
t->data = data

else:
first = key[0]
rest = key[1..m - 1] // i.e., slice off first character from key
t->children[first] = trieInsert(t->children[first], rest, data)

return t

exercise Try writing an iterative version.



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search

Search is similar to insertion:
• Start at the root
• For each character c in the key (from left to right):

• If there is no child node corresponding to c, return false
• Descend into the child node corresponding to c

• If the resulting node is a finishing node, then return true, otherwise
return false



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search
Example

Search for “early”

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

1

2

3

4

5

jFound! j



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search
Example

Search for “early”

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

1

2

3

4

5

jFound! j



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search
Example

Search for “apple”

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

1

2

3

4

Not found - node for “appl” has no child node for ‘e’



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search
Example

Search for “apple”

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

1

2

3

4

Not found - node for “appl” has no child node for ‘e’



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search
Example

jSearch for “ear” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

1

2

3

Not found - node for “ear” is not a finishing node



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search
Example

jSearch for “ear” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

1

2

3

Not found - node for “ear” is not a finishing node



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Search
Pseudocode

Recursive method:
trieSearch(t, key):

Input: trie t
key of length m

Output: true if key is in t
false otherwise

if t is empty:
return false

else if m = 0:
return t->finish = true

else:
first = key[0]
rest = key[1..m - 1]
return trieSearch(t->children[first], rest)

exercise Try writing an iterative version.



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion

Deletion is trickier…
• Can simply find node corresponding to given key
and mark it as a non-finishing node

• …but this can leave behind dead branches
• i.e., branches that don’t contain any finishing nodes
• dead branches waste memory



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion

Example of dead branch:

s

e

a l

l

h

e

l

l

o

r

e

delete
“shore”

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion

Process for deletion:
• Find node corresponding to given key

• If node doesn’t exist, do nothing
• Mark the node as a non-finishing node
• While current node is not a finishing node and has no child nodes:

• Delete current node and move up to parent
• Handled recursively

• Be careful not to delete the root node!



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Example

jDelete “ace” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

Deleted - node for “ace” is no longer marked as a finishing node



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Example

jDelete “ace” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

Deleted - node for “ace” is no longer marked as a finishing node



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Example

jDelete “apply” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

Deleted - deleted nodes corresponding to “apply” and “appl”



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Example

jDelete “apply” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

Deleted - deleted nodes corresponding to “apply” and “appl”



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Example

jDelete “earth” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

Deleted - deleted nodes corresponding to “earth” and “eart”



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Example

jDelete “earth” j

a

c

e

s

p

e

s

p

l

y

e

a

r

l

y

t

h

s

t

Deleted - deleted nodes corresponding to “earth” and “eart”



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Pseudocode (I)

Recursive method:
trieDelete(t, key):

Input: trie t
key of length m

Output: t with key deleted

return doTrieDelete(t, key, true)



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Trie Deletion
Pseudocode (II)

doTrieDelete(t, key, isRoot):
Input: trie t

key of length m
boolean isRoot indicating if t is the root node

Output: t with key deleted

if t is empty:
return t

else if m = 0:
t->finish = false

else:
first = key[0]
rest = key[1..m - 1]
t->children[first] = doTrieDelete(t->children[first], rest, false)

if isRoot = false and t->finish = false and t has no child nodes:
return NULL

else:
return t



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix

Analysis

Analysis of standard trie:
• O(m) insertion, search and deletion

• where m is the length of the given key
• each of these needs to examine at most m nodes

• O(nR) space
• where n is the total number of characters in all keys
• where R is the size of the underlying alphabet (e.g., 26)



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants

Simple trie representation consumes an enormous amount of memory
• Each node contains ALPHABET_SIZE pointers

• If keys are alphabetic, then this is 26 pointers…
• …which is 8× 26 = 208 bytes on an 64-bit machine!

• If keys can contain any ASCII character, then this is 128 pointers!
• Even if trie contains many keys, most child pointers will be unused



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants

Different representations exist to reduce memory usage at the cost of
increased running time:
• Use a singly linked list to store child nodes
• Alphabet reduction - break each character into smaller chunks, and treat
these chunks as the characters



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Linked list of children

One technique to reduce memory usage:

Have each node store a linked list of its children
instead of an array of ALPHABET_SIZE pointers



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Linked list of children

struct node {
struct child *children;
bool finish;
Data data;

};

struct child {
char c;
struct node *node;
struct child *next;

};

Instead of:

e h
… …

We have:

e h ×

… …



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Linked list of children

Consider the following trie:

a

n t

e

b

e i

d

o

w

d

o



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Linked list of children

Its concrete representation:

a b d ×

n t ×

× e ×

×

e i o ×

× d ×

×

w ×

×

o ×

×



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Left-child right-sibling binary tree

We can simplify this representation
by merging each linked list node with its corresponding trie node

This produces the left-child right-sibling binary tree representation

struct node {
char c;
struct node *children;
struct node *sibling;
bool finish;
Data data;

};



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Left-child right-sibling binary tree

Concrete representation of above trie:

a

n t

e

b

e i

d

o

w

d

o



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Left-child right-sibling binary tree

Analysis:
• This representation uses much less space

• Each node just stores one extra pointer to its sibling
instead of ALPHABET_SIZE pointers

• But this is at the expense of running time
• Need to traverse up to ALPHABET_SIZE nodes before reaching desired
child



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Alphabet reduction

Another technique to reduce memory usage:
alphabet reduction

Break each 8-bit character into two 4-bit nybbles

This reduces the branching factor,
i.e., the number of pointers in each node



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Alphabet reduction

For example, the word “sea” consists of the following bytes:

s e a
01110011 01100101 01100001

We break it into 4-bit nybbles like so:

s e a
01110011 01100101 01100001
0111 0011 0110 0101 0110 0001

Instead of storing the word “sea”, we now insert the following word:
0111 0011 0110 0101 0110 0001



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Alphabet reduction

Analysis:
• This representation uses much less space

• Much fewer pointers per node
• But this is at the expense of running time

• Path to each key is twice as long - lookups need to visit twice as many
nodes



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Compressed tries

Another technique to reduce memory usage:
use a compressed trie

In a compressed trie, each node contains ≥ 1 character

Obtained by merging non-branching chains of nodes
Specifically, non-finishing nodes with only one child are merged with their child



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants
Linked list of
children
Binary tree
Alphabet reduction
Compressed tries

Applications

Appendix

Variants
Compressed tries



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications
Word finding
Autocomplete
Predictive text

Appendix

Applications
Word finding

Idea:

Given a document, preprocess it
by storing all words in a trie,

and for each word, store the location of all its occurrences

When user searches for a word,
can query the trie instead of scanning entire document



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications
Word finding
Autocomplete
Predictive text

Appendix

Applications
Word finding



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications
Word finding
Autocomplete
Predictive text

Appendix

Applications
Autocomplete

Autocomplete
Given a series of letters,

find all words that start with it



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications
Word finding
Autocomplete
Predictive text

Appendix

Applications
Predictive text

Predictive text
Given a series of button presses (e.g., on a keypad),
where each button can represent multiple letters,

find all possible matching words



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Appendix



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e



COMP2521
25T2

Motivation

Tries

Insertion

Search

Deletion

Analysis

Variants

Applications

Appendix
Insertion example

Trie Insertion Example

Insert the following words into an initially empty trie:

sea shell sell shore she

s

e

a

s

e

a

h

e

l

l

s

e

a l

l

h

e

l

l

s

e

a l

l

h

e

l

l

o

r

e


	Motivation
	Tries
	Representation

	Insertion
	Search
	Deletion
	Analysis
	Variants
	Linked list of children
	Binary tree
	Alphabet reduction
	Compressed tries

	Applications
	Word finding
	Autocomplete
	Predictive text

	Appendix
	Insertion example


