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Minimum Spanning Trees

A spanning tree of an undirected graph G
is a subgraph of G that contains all vertices of G,

that is connected and contains no cycles

A minimum spanning tree of an undirected weighted graph G
is a spanning tree of G that has

minimum total edge weight among all spanning trees of G

Applications:
Electrical grids, networks

Any situation where we want to connect nodes as cheaply as possible
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Minimum Spanning Trees
Example
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Minimum Spanning Tree Algorithms

Basic minimum spanning tree algorithms:
• Kruskal’s algorithm
• Prim’s algorithm
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Kruskal’s Algorithm

Invented by
American mathematician, statistician, computer scientist

Joseph Kruskal in 1956
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Kruskal’s Algorithm

Algorithm:
1 Start with an empty graph

• With same vertices as original graph
2 Consider edges in increasing weight order

• Add edge if it does not form a cycle in the MST
3 Repeat until V − 1 edges have been added

Critical operations:
• Iterating over edges in weight order
• Checking if adding an edge would form a cycle
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Kruskal’s Algorithm
Example

Run Kruskal’s algorithm on this graph:
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Kruskal’s Algorithm
Example
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Kruskal’s Algorithm
Example

MST:
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Kruskal’s Algorithm
Pseudocode (Version 1)

kruskalMst(G):
Input: graph G with V vertices
Output: minimum spanning tree of G

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight
for each edge e in sortedEdges:

add e to mst
if mst has a cycle:

remove e from mst

if mst has V − 1 edges:
return mst
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Kruskal’s Algorithm
Pseudocode (Version 2)

kruskalMst(G):
Input: graph G with V vertices
Output: minimum spanning tree of G

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight
for each edge (v, w, weight) in sortedEdges:

if there is no path between v and w in mst:
add edge (v, w, weight) to mst

if mst has V − 1 edges:
return mst



COMP2521
25T2

Minimum
Spanning
Trees

Kruskal’s
Algorithm
Example
Pseudocode
Analysis
Correctness
Time complexity

Prim’s
Algorithm

Comparison

Other
Algorithms

Appendix

Kruskal’s Algorithm
Analysis - Correctness

Proof by exchange argument.

Idea:
• Suppose there exists another algorithm A which makes a different set
of choices

• In this case, chooses a different set of edges for the MST
• Identify one choice made by A which is not made by our algorithm
• Show that by exchanging that choice with one of the choices made by
our algorithm, the solution does not become worse or less optimal

• In this case, the “solution” is the spanning tree produced
• In this case, an “optimal” solution is a spanning tree that costs as little as
possible
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Kruskal’s Algorithm
Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal’s algorithm.
Let A be the set of edges selected by a different algorithm.

edges of G e1 e2 e3 e4 e5 e6 e7 e8 e9 . . .

edges of K e1 e2 e4 e5 e7 e9 . . .

edges of A e1 e2 e4 e7 e8 e9 . . .

G

e8

e3

e1

e6

e4

e2

e10

e5

e9

e11

e12

e7

e13

e14

K A
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Kruskal’s Algorithm
Analysis - Correctness

Consider the first edge that is chosen by K but not by A.

Add this edge to a copy of A (call it A′). This forms a cycle in A′.

Now find the highest-weight edge in this cycle and remove it from A′.

edges of G e1 e2 e3 e4 e5 e6 e7 e8 e9 . . .

edges of K e1 e2 e4 e5 e7 e9 . . .

edges of A e1 e2 e4 e7 e8 e9 . . .

edges of A′ e1 e2 e4 e5 e7 e8 e9 . . .edges of A′ e1 e2 e4 e5 e7 e8 e9 . . .

G

e8

e3

e1

e6

e4

e2

e10

e5

e9

e11

e12

e7

e13

e14

K A

A′
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Kruskal’s Algorithm
Analysis - Correctness

Consider the first edge that is chosen by K but not by A.

Add this edge to a copy of A (call it A′). This forms a cycle in A′.

Now find the highest-weight edge in this cycle and remove it from A′.

edges of G e1 e2 e3 e4 e5 e6 e7 e8 e9 . . .

edges of K e1 e2 e4 e5 e7 e9 . . .
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Kruskal’s Algorithm
Analysis - Correctness

Consider the first edge that is chosen by K but not by A.

Add this edge to a copy of A (call it A′). This forms a cycle in A′.

Now find the highest-weight edge in this cycle and remove it from A′.

edges of G e1 e2 e3 e4 e5 e6 e7 e8 e9 . . .

edges of K e1 e2 e4 e5 e7 e9 . . .
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Kruskal’s Algorithm
Analysis - Correctness

K A A′

Now A′ is once again a spanning tree,
but it is more similar to K than A and it costs no more than A.

Repeat until A′ is identical to K . Each time we perform an exchange, the
spanning tree does not increase in cost.

Therefore, K is an optimal spanning tree (MST).
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Kruskal’s Algorithm
Analysis - Correctness

K A A′

Now A′ is once again a spanning tree,
but it is more similar to K than A and it costs no more than A.

Repeat until A′ is identical to K . Each time we perform an exchange, the
spanning tree does not increase in cost.

Therefore, K is an optimal spanning tree (MST).
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Kruskal’s Algorithm
Analysis - Time complexity

Analysis:
• Sorting edges is O(E · log E)

• Main loop has at most E iterations
• Different ways to check if adding an edge would form a cycle

• Cycle/path checking is O(V ) in the worst case (adjacency list)
⇒ overall cost = O(E · log E + E · V ) = O(E · V )

• Using union-find data structure is close to O(1) in the worst case
⇒ overall cost = O(E · log E + E) = O(E · log E) = O(E · log V )
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Prim’s Algorithm

Developed by Vojtěch Jarník in 1930
and rediscovered by Robert C. Prim in 1957

Vojtěch Jarník (j Robert C. Prim j)
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Prim’s Algorithm

Algorithm:
1 Start with an empty graph
2 Start from any vertex, add it to the MST
3 Choose cheapest edge s–t such that:

• s has been added to the MST, and
• t has not been added to the MST

and add this edge and the vertex t to the MST
4 Repeat previous step until V − 1 edges have been added

• Or until all vertices have been added

Critical operations:
• Finding the cheapest edge s–t such that

s has been added to the MST and t has not been added to the MST
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Prim’s Algorithm
Example

Run Prim’s algorithm on this graph (starting at 0):
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Prim’s Algorithm
Example
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Prim’s Algorithm
Example

MST:
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Prim’s Algorithm
Pseudocode

primMst(G):
Input: graph G with V vertices
Output: minimum spanning tree of G

mst = empty graph with V vertices
usedV = {0}
unusedE = edges of G
while |usedV| < V:

find cheapest edge e (s, t, weight) in unusedE such that
s ∈ usedV and t /∈ usedV

add e to mst
add t to usedV
remove e from unusedE

return mst
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Prim’s Algorithm
Analysis

Analysis:
• Algorithm considers at most E edges⇒ O(E)

• Loop has V iterations
• In each iteration, finding the minimum-weighted edge:

• With set of edges is O(E)
⇒ overall cost = O(E + V · E) = O(V · E)

• With Fibonacci heap is O(log E) = O(log V )
⇒ overall cost = O(E + V · log V )
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Comparison
Kruskal’s algorithm vs Prim’s algorithm

Kruskal’s algorithm…
• is O(E · log V )

• uses array-based data structures
• performs better on sparse graphs

Prim’s algorithm…
• is O(E + V · log V )

• uses complex linked data structures
• in its most efficient implementation (Fibonacci heap)

• performs better on dense graphs
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Other MST Algorithms

• Boruvka’s algorithm
• Oldest MST algorithm
• Start with V separate components
• Join components using min cost links
• Continue until only a single component
• Worst-case time complexity: O(E · log V )

• Karger, Klein and Tarjan
• Based on Boruvka’s algorithm, but non-deterministic
• Randomly selects subset of edges to consider
• Time complexity: O(E) on average
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Kruskal’s Algorithm Example

Original graph

Adding 0-1 would not create a cycleAdding 3-4 would not create a cycleAdding 0-3 would not create a cycleAdding 0-4 would create a cycleAdding 1-4 would create a cycleAdding 2-3 would not create a cycleDone - MST has 4 edges
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Kruskal’s Algorithm Example
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Adding 0-1 would not create a cycle
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Kruskal’s Algorithm Example

Original graphAdding 0-1 would not create a cycle
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Kruskal’s Algorithm Example
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Kruskal’s Algorithm Example

Original graphAdding 0-1 would not create a cycleAdding 3-4 would not create a cycleAdding 0-3 would not create a cycle

Adding 0-4 would create a cycle
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Kruskal’s Algorithm Example

Original graphAdding 0-1 would not create a cycleAdding 3-4 would not create a cycleAdding 0-3 would not create a cycleAdding 0-4 would create a cycle

Adding 1-4 would create a cycle
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Kruskal’s Algorithm Example

Original graphAdding 0-1 would not create a cycleAdding 3-4 would not create a cycleAdding 0-3 would not create a cycleAdding 0-4 would create a cycleAdding 1-4 would create a cycle
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Kruskal’s Algorithm Example

Original graphAdding 0-1 would not create a cycleAdding 3-4 would not create a cycleAdding 0-3 would not create a cycleAdding 0-4 would create a cycleAdding 1-4 would create a cycleAdding 2-3 would not create a cycle
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Prim’s Algorithm Example
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Start at vertex 0Choose cheapest edge out of these (in red)Add 0-1 to MSTChoose cheapest edge out of these (in red)Add 0-3 to MSTChoose cheapest edge out of these (in red)Add 3-4 to MSTChoose cheapest edge out of these (in red)Add 3-2 to MSTDone - MST has 4 edges
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Prim’s Algorithm Example
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Start at vertex 0
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Prim’s Algorithm Example

Original graphStart at vertex 0

Choose cheapest edge out of these (in red)
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Prim’s Algorithm Example

Original graphStart at vertex 0Choose cheapest edge out of these (in red)

Add 0-1 to MST
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Prim’s Algorithm Example

Original graphStart at vertex 0Choose cheapest edge out of these (in red)Add 0-1 to MST

Choose cheapest edge out of these (in red)
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Prim’s Algorithm Example

Original graphStart at vertex 0Choose cheapest edge out of these (in red)Add 0-1 to MSTChoose cheapest edge out of these (in red)

Add 0-3 to MST

Choose cheapest edge out of these (in red)Add 3-4 to MSTChoose cheapest edge out of these (in red)Add 3-2 to MSTDone - MST has 4 edges
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