
COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

COMP2521 25T2
Graphs (VI)

Dijkstra’s Algorithm

Sim Mautner
cs2521@cse.unsw.edu.au

shortest path
dijkstra’s algorithm



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Shortest Path

In a weighted graph…

A path is a sequence of edges
connected end-to-end

(v0, v1,w1), (v1, v2,w2), … , (vm−1, vm,wm)

v0 v1 v2
…

vm−1 vm

weight1 weight2 weightm

The cost of a path is
the sum of edge weights along the path

The shortest path between two vertices s and t is
the path from s to t with minimum cost



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Shortest Path

Variations on shortest path problem:
• Source-target shortest path

• Shortest path from source vertex s to target vertex t
• Single-source shortest path

• Shortest path from source vertex s to all other vertices
• All-pairs shortest path

• Shortest path between all pairs of source and target vertices



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Shortest Path

In a weighted graph,
a path with more edges may be “shorter” than

a path with fewer edges

0 1

2

34

5

5

2 2

2

1

1 1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Dijkstra’s Algorithm

Invented by Dutch computer scientist
Edsger W. Dijkstra in 1956



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Dijkstra’s Algorithm

Dijkstra’s algorithm
finds the shortest path in a weighted graph

with non-negative weights



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Data Structures

Data structures used in Dijkstra’s algorithm:
• Distance array (dist)

• To keep track of shortest currently known distance to each vertex
• Predecessor array (pred)

• Same purpose as in BFS/DFS
• To keep track of the predecessor of each vertex on the shortest currently
known path to that vertex

• Used to construct the shortest path
• Set of vertices

• Stores unexplored vertices



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Algorithm

1 Create and initialise data structures
• Create distance array, initialised to infinity

• In C, can use INT_MAX (from <limits.h>)
• Create predecessor array, initialised to -1
• Initialise set of vertices to contain all vertices

2 Set distance of source vertex (s) to 0
3 While set of vertices is not empty:

1 Remove vertex from vertex set with smallest distance in distance array
• Let this vertex be v

2 Explore v - that is, for each edge v – w:
• Check if using this edge gives a shorter path to w
• If so, update w’s distance and predecessor - this is called edge relaxation



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation

During Dijkstra’s algorithm, the dist and pred arrays:
• contain data about the shortest path discovered so far
• need to be updated if a shorter path to some vertex is found

• this is done via edge relaxation



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation

Suppose we are considering edge (v,w,weight).

We have the following data:
• dist[v] - length of shortest known path from s to v
• dist[w] - length of shortest known path from s to w (which may be∞)

v

w

s weight

weight

dist[v]

dist[w]

In edge relaxation, we take the shortest known path from s to v and extend it
using edge (v,w,weight) to create a new path from s to w.



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation

Suppose we are considering edge (v,w,weight).

We have the following data:
• dist[v] - length of shortest known path from s to v
• dist[w] - length of shortest known path from s to w (which may be∞)

v

w

s

weight

weight

dist[v]

dist[w]

In edge relaxation, we take the shortest known path from s to v and extend it
using edge (v,w,weight) to create a new path from s to w.



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation

Suppose we are considering edge (v,w,weight).

We have the following data:
• dist[v] - length of shortest known path from s to v
• dist[w] - length of shortest known path from s to w (which may be∞)

v

w

s weight

weight

dist[v]

dist[w]

In edge relaxation, we take the shortest known path from s to v and extend it
using edge (v,w,weight) to create a new path from s to w.



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation

Now we have two paths from s to w:
• Shortest known path
• New path via v

v

w

s weight

dist[v]

dist[w]

If the new path is shorter, then we update dist[w] and pred[w].

if dist[v] + weight < dist[w]:
dist[w] = dist[v] + weight
pred[w] = v



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation
Example 1

Before relaxation along (u, w, 7)

s
w

u 7

dist[u] = 5
dist[w] =∞

... [u] ... [w]

dist ... 5 ... ∞

pred ... ... ... -1

After relaxation along (u, w, 7)

s
w

u 7

dist[u] = 5
dist[w] = 12

... [u] ... [w]

dist ... 5 ... 12

pred ... ... ... u



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation
Example 1

Before relaxation along (u, w, 7)

s
w

u 7

dist[u] = 5
dist[w] =∞

... [u] ... [w]

dist ... 5 ... ∞

pred ... ... ... -1

After relaxation along (u, w, 7)

s
w

u 7

dist[u] = 5
dist[w] = 12

... [u] ... [w]

dist ... 5 ... 12

pred ... ... ... u



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation
Example 2

Before relaxation along (v, w, 3)

s

v

w
u

dist[w] = 12

dist[v] = 8
3

... [u] [v] [w]

dist ... 5 8 12

pred ... ... ... u

After relaxation along (v, w, 3)

s

v

w
u

dist[v] = 8
3

dist[w] = 11
... [u] [v] [w]

dist ... 5 8 11

pred ... ... ... v



COMP2521
25T2

Algorithm
Edge relaxation

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Edge Relaxation
Example 2

Before relaxation along (v, w, 3)

s

v

w
u

dist[w] = 12

dist[v] = 8
3

... [u] [v] [w]

dist ... 5 8 12

pred ... ... ... u

After relaxation along (v, w, 3)

s

v

w
u

dist[v] = 8
3

dist[w] = 11
... [u] [v] [w]

dist ... 5 8 11

pred ... ... ... v



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Pseudocode

dijkstraSSSP(G, src):
Input: graph G, source vertex src

create dist array, initialised to ∞
create pred array, initialised to -1
create vSet containing all vertices of G

dist[src] = 0
while vSet is not empty:

find vertex v in vSet such that dist[v] is minimal
remove v from vSet
for each edge (v, w, weight) in G:

relax along (v, w weight)



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

Dijkstra’s algorithm starting at 0

0

1

2

3

4

5

14

9

7

5

4

3

10
15

8



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Initialisation (p)

(p)After first iteration (v = 0) (p)(p)After second iteration (v = 3) (p)(p)After third iteration (v = 2) (p)(p)After fourth iteration (v = 5) (p)(p)After fifth iteration (v = 1) (p)(p)After sixth iteration (v = 4) (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 ∞ ∞ ∞ ∞ ∞

dist 0 14 9 7 ∞ ∞dist 0 14 9 7 ∞ 22dist 0 13 9 7 ∞ 12dist 0 13 9 7 20 12dist 0 13 9 7 18 12

pred -1 -1 -1 -1 -1 -1

pred -1 0 0 0 -1 -1pred -1 0 0 0 -1 3pred -1 2 0 0 -1 2pred -1 2 0 0 5 2pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Initialisation (p)

(p)After first iteration (v = 0) (p)

(p)After second iteration (v = 3) (p)(p)After third iteration (v = 2) (p)(p)After fourth iteration (v = 5) (p)(p)After fifth iteration (v = 1) (p)(p)After sixth iteration (v = 4) (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 ∞ ∞ ∞ ∞ ∞

dist 0 14 9 7 ∞ ∞

dist 0 14 9 7 ∞ 22dist 0 13 9 7 ∞ 12dist 0 13 9 7 20 12dist 0 13 9 7 18 12

pred -1 -1 -1 -1 -1 -1

pred -1 0 0 0 -1 -1

pred -1 0 0 0 -1 3pred -1 2 0 0 -1 2pred -1 2 0 0 5 2pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Initialisation (p)(p)After first iteration (v = 0) (p)

(p)After second iteration (v = 3) (p)

(p)After third iteration (v = 2) (p)(p)After fourth iteration (v = 5) (p)(p)After fifth iteration (v = 1) (p)(p)After sixth iteration (v = 4) (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 ∞ ∞ ∞ ∞ ∞dist 0 14 9 7 ∞ ∞

dist 0 14 9 7 ∞ 22

dist 0 13 9 7 ∞ 12dist 0 13 9 7 20 12dist 0 13 9 7 18 12

pred -1 -1 -1 -1 -1 -1pred -1 0 0 0 -1 -1

pred -1 0 0 0 -1 3

pred -1 2 0 0 -1 2pred -1 2 0 0 5 2pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Initialisation (p)(p)After first iteration (v = 0) (p)(p)After second iteration (v = 3) (p)

(p)After third iteration (v = 2) (p)

(p)After fourth iteration (v = 5) (p)(p)After fifth iteration (v = 1) (p)(p)After sixth iteration (v = 4) (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 ∞ ∞ ∞ ∞ ∞dist 0 14 9 7 ∞ ∞dist 0 14 9 7 ∞ 22

dist 0 13 9 7 ∞ 12

dist 0 13 9 7 20 12dist 0 13 9 7 18 12

pred -1 -1 -1 -1 -1 -1pred -1 0 0 0 -1 -1pred -1 0 0 0 -1 3

pred -1 2 0 0 -1 2

pred -1 2 0 0 5 2pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Initialisation (p)(p)After first iteration (v = 0) (p)(p)After second iteration (v = 3) (p)(p)After third iteration (v = 2) (p)

(p)After fourth iteration (v = 5) (p)

(p)After fifth iteration (v = 1) (p)(p)After sixth iteration (v = 4) (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 ∞ ∞ ∞ ∞ ∞dist 0 14 9 7 ∞ ∞dist 0 14 9 7 ∞ 22dist 0 13 9 7 ∞ 12

dist 0 13 9 7 20 12

dist 0 13 9 7 18 12

pred -1 -1 -1 -1 -1 -1pred -1 0 0 0 -1 -1pred -1 0 0 0 -1 3pred -1 2 0 0 -1 2

pred -1 2 0 0 5 2

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Initialisation (p)(p)After first iteration (v = 0) (p)(p)After second iteration (v = 3) (p)(p)After third iteration (v = 2) (p)(p)After fourth iteration (v = 5) (p)

(p)After fifth iteration (v = 1) (p)

(p)After sixth iteration (v = 4) (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 ∞ ∞ ∞ ∞ ∞dist 0 14 9 7 ∞ ∞dist 0 14 9 7 ∞ 22dist 0 13 9 7 ∞ 12dist 0 13 9 7 20 12

dist 0 13 9 7 18 12

pred -1 -1 -1 -1 -1 -1pred -1 0 0 0 -1 -1pred -1 0 0 0 -1 3pred -1 2 0 0 -1 2pred -1 2 0 0 5 2

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Initialisation (p)(p)After first iteration (v = 0) (p)(p)After second iteration (v = 3) (p)(p)After third iteration (v = 2) (p)(p)After fourth iteration (v = 5) (p)(p)After fifth iteration (v = 1) (p)

(p)After sixth iteration (v = 4) (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 ∞ ∞ ∞ ∞ ∞dist 0 14 9 7 ∞ ∞dist 0 14 9 7 ∞ 22dist 0 13 9 7 ∞ 12dist 0 13 9 7 20 12

dist 0 13 9 7 18 12

pred -1 -1 -1 -1 -1 -1pred -1 0 0 0 -1 -1pred -1 0 0 0 -1 3pred -1 2 0 0 -1 2pred -1 2 0 0 5 2

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Example

(p)Done (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8
while vSet is not empty:

find vertex v in vSet such that
dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]

dist 0 13 9 7 18 12

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

The shortest path from the source vertex to any other vertex
can be constructed by tracing backwards through the predecessor array

(like for BFS)



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

Example: Shortest path from 0 to 4

0

−→ 2 −→ 1 −→

4

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

1

2

[0] [1] [2] [3] [4] [5]

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

Example: Shortest path from 0 to 4

0

−→ 2 −→ 1 −→

4

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

1

2

[0] [1] [2] [3] [4] [5]

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

Example: Shortest path from 0 to 4

0

−→ 2 −→

1 −→ 4

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

1

2

[0] [1] [2] [3] [4] [5]

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

Example: Shortest path from 0 to 4

0

−→ 2 −→

1 −→ 4

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

1

2

[0] [1] [2] [3] [4] [5]

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

Example: Shortest path from 0 to 4

0

−→

2 −→ 1 −→ 4

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

1

2

[0] [1] [2] [3] [4] [5]

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

Example: Shortest path from 0 to 4

0

−→

2 −→ 1 −→ 4

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

1

2

[0] [1] [2] [3] [4] [5]

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

Example: Shortest path from 0 to 4

0 −→ 2 −→ 1 −→ 4

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

1

2

[0] [1] [2] [3] [4] [5]

pred -1 2 0 0 1 2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding
Example

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Path Finding

How to find shortest path between two other vertices
(neither of which are the source vertex)?

Generally, you will need to rerun Dijkstra’s algorithm from one of these
vertices.



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Implementation Details
Set of vertices

The set of vertices can be implemented in different ways:
1 Visited array
2 Explicit array/list of vertices
3 Priority queue



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Implementation Details
Set of vertices - visited array

Visited array implementation:
• Similar to visited array in BFS/DFS
• Array of V booleans, initialised to false
• After exploring vertex v, set visited[v] to true
• At the start of each iteration, find vertex v such that visited[v] is false
and dist[v] is minimal⇒ O(V )



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Implementation Details
Set of vertices - list of vertices

Array/list of vertices implementation:
• Store all vertices in an array/linked list
• After exploring vertex v, remove v from array/linked list
• At the start of each iteration, find vertex in array/list such that dist[v] is
minimal⇒ O(V )



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Implementation Details
Set of vertices - priority queue

Priority queue implementation:
• A priority queue is an ADT…

• where each item has a priority
• with two main operations:

• Insert: insert item with priority
• Delete: remove item with highest priority

• Use priority queue to store vertices, use distance to vertex as priority
(smaller distance = higher priority)

• A good priority queue implementation has O(log n) insert and delete

Priority queues will be discussed in Week 9.



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis
Correctness
Time complexity

Other
Algorithms

Appendix

Analysis
Correctness

Proof by induction
(see appendix for the proof outline)



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis
Correctness
Time complexity

Other
Algorithms

Appendix

Analysis
Time complexity

Analysis:
• Each edge is considered once⇒ O(E)

• Undirected edges are considered once in each direction
• Outer loop has V iterations
• Every iteration, algorithm must find vertex v in vSet with minimum
distance - time complexity depends on how set of vertices is
implemented

• Boolean array⇒ O(V ) per iteration
⇒ overall cost = O(E + V 2) = O(V 2)

• Array/list of vertices⇒ O(V ) per iteration
⇒ overall cost = O(E + V 2) = O(V 2)

• Priority queue⇒ O(log V ) per iteration
⇒ overall cost = O(E + V log V )



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix

Other Shortest Path Algorithms

For your curiosity:
• Floyd-Warshall Algorithm

• All-pairs shortest path
• Works for graphs with negative weights

• Bellman-Ford Algorithm
• Single-source shortest path
• Works for graphs with negative weights
• Can detect negative cycles



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Appendix



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3

2
4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3

2
4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3

2
4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm

4

10

7

5

2

6

8

3
2

4

1



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)

(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0 ∞

1413

∞

9

∞

7

∞

2018

∞

2212

pred -1 -1

02

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)

(p)Remove 0 from vSet (p)

(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0 ∞

1413

∞

9

∞

7

∞

2018

∞

2212

pred -1 -1

02

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)

(p)Explore 0 (p)

(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0 ∞

1413

∞

9

∞

7

∞

2018

∞

2212

pred -1 -1

02

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)

(p)Relax along (0, 1, 14) (p)

dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0 ∞

1413

∞

9

∞

7

∞

2018

∞

2212

pred -1 -1

02

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)

(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]

dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0 ∞

1413

∞

9

∞

7

∞

2018

∞

2212

pred -1 -1

02

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)

(p)Relax along (0, 1, 14) (p)

dist[0] + 14 = 14 < dist[1]

dist[0] + 14 = 14 < dist[1]

dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0 ∞

1413

∞

9

∞

7

∞

2018

∞

2212

pred -1 -1

02

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)

(p)Relax along (0, 1, 14) (p)

dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]

dist[0] + 14 = 14 < dist[1]

(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0 ∞

1413

∞

9

∞

7

∞

2018

∞

2212

pred -1 -1

02

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)

(p)Relax along (0, 1, 14) (p)

dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]

dist[0] + 14 = 14 < dist[1]

(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13

∞

9

∞

7

∞

2018

∞

2212

pred -1

-1

0

2

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]

(p)Relax along (0, 2, 9) (p)

dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]
(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13

∞

9

∞

7

∞

2018

∞

2212

pred -1

-1

0

2

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]

(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]

dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]
(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13

∞

9

∞

7

∞

2018

∞

2212

pred -1

-1

0

2

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]

(p)Relax along (0, 2, 9) (p)

dist[0] + 9 = 9 < dist[2]

dist[0] + 9 = 9 < dist[2]

dist[0] + 9 = 9 < dist[2]
(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13

∞

9

∞

7

∞

2018

∞

2212

pred -1

-1

0

2

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]

(p)Relax along (0, 2, 9) (p)

dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13

∞

9

∞

7

∞

2018

∞

2212

pred -1

-1

0

2

-1

0

-1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]

(p)Relax along (0, 2, 9) (p)

dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

33

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9 ∞

7

∞

2018

∞

2212

pred -1

-1

0

2 -1

0 -1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)

dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]
(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9 ∞

7

∞

2018

∞

2212

pred -1

-1

0

2 -1

0 -1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]

dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]
(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9 ∞

7

∞

2018

∞

2212

pred -1

-1

0

2 -1

0 -1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)

dist[0] + 7 = 7 < dist[3]

dist[0] + 7 = 7 < dist[3]

dist[0] + 7 = 7 < dist[3]
(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9 ∞

7

∞

2018

∞

2212

pred -1

-1

0

2 -1

0 -1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)

dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9 ∞

7

∞

2018

∞

2212

pred -1

-1

0

2 -1

0 -1

0

-1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)

dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)

(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)

(p)Remove 3 from vSet (p)

(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)

(p)Explore 3 (p)

(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 52

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)

(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)

(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0

2 52

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)

(p)Relax along (3, 2, 10) (p)

dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0

2

52

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)

(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]

dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0

2

52

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)

(p)Relax along (3, 2, 10) (p)

dist[3] + 10 = 17 ≮ dist[2]

dist[3] + 10 = 17 ≮ dist[2]

dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0

2

52

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)

(p)Relax along (3, 2, 10) (p)

dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]

dist[3] + 10 = 17 ≮ dist[2]

(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0

2

52

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)

(p)Relax along (3, 2, 10) (p)

dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]

dist[3] + 10 = 17 ≮ dist[2]

(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0

2

52

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]

(p)Relax along (3, 5, 15) (p)

dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]
(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2

5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]

(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]

dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]
(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2

5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]

(p)Relax along (3, 5, 15) (p)

dist[3] + 15 = 22 < dist[5]

dist[3] + 15 = 22 < dist[5]

dist[3] + 15 = 22 < dist[5]
(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2

5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]

(p)Relax along (3, 5, 15) (p)

dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2

5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018

∞

2212

pred -1

-1

0

2 -1

0

-1

0 -1

51

-1

32



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]

(p)Relax along (3, 5, 15) (p)

dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2

5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)

(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)

(p)Remove 2 from vSet (p)

(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)

(p)Explore 2 (p)

(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)

(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)

(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

20

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)

(p)Relax along (2, 1, 4) (p)

dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]
(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)

(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]

dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]
(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)

(p)Relax along (2, 1, 4) (p)

dist[2] + 4 = 13 < dist[1]

dist[2] + 4 = 13 < dist[1]

dist[2] + 4 = 13 < dist[1]
(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)

(p)Relax along (2, 1, 4) (p)

dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞

14

13 ∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-1

0

2 -1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)

(p)Relax along (2, 1, 4) (p)

dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)

(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

55

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)

(p)Relax along (2, 5, 3) (p)

dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]
(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)

(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]

dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]
(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)

(p)Relax along (2, 5, 3) (p)

dist[2] + 3 = 12 < dist[5]

dist[2] + 3 = 12 < dist[5]

dist[2] + 3 = 12 < dist[5]
(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)

(p)Relax along (2, 5, 3) (p)

dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞

22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -1

3

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)

(p)Relax along (2, 5, 3) (p)

dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1]

[2]

[2] [3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)

(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)

(p)Remove 5 from vSet (p)

(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)

(p)Explore 5 (p)

(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

41

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)

(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

52

3

41

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)

(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

41

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)

(p)Relax along (5, 4, 8) (p)

dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]
(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)

(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]

dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]
(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)

(p)Relax along (5, 4, 8) (p)

dist[5] + 8 = 20 < dist[4]

dist[5] + 8 = 20 < dist[4]

dist[5] + 8 = 20 < dist[4]
(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)

(p)Relax along (5, 4, 8) (p)

dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7 ∞

2018 ∞22

12

pred -1

-10

2

-1

0

-1

0 -1

51 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)

(p)Relax along (5, 4, 8) (p)

dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)

(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)

(p)Remove 1 from vSet (p)

(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)

(p)Explore 1 (p)

(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

44

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)

(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0

2

44

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)

(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0

2

44

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)

(p)Relax along (1, 4, 5) (p)

dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]
(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)

(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]

dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]
(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)

(p)Relax along (1, 4, 5) (p)

dist[1] + 5 = 18 < dist[4]

dist[1] + 5 = 18 < dist[4]

dist[1] + 5 = 18 < dist[4]
(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)

(p)Relax along (1, 4, 5) (p)

dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞

20

18 ∞22

12

pred -1

-10

2

-1

0

-1

0

-1

5

1 -13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)

(p)Relax along (1, 4, 5) (p)

dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0] [1]

[1] [2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)

(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)

(p)Remove 4 from vSet (p)

(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)

(p)Explore 4 (p)

(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)

(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

41

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)

(p)Done with exploring 4 (p)(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3] [4]

[4] [5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)

(p)Done with exploring 4 (p)

(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Dijkstra’s Algorithm Example

(p)Initialisation (p)(p)Remove 0 from vSet (p)(p)Explore 0 (p)(p)Relax along (0, 1, 14) (p)
dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]dist[0] + 14 = 14 < dist[1]
(p)Relax along (0, 2, 9) (p)
dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]dist[0] + 9 = 9 < dist[2]

(p)Relax along (0, 3, 7) (p)
dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]dist[0] + 7 = 7 < dist[3]

(p)Done with exploring 0 (p)(p)Remove 3 from vSet (p)(p)Explore 3 (p)(p)No need to consider (3, 0, 7) (p)
(0 has already been explored)
(p)Relax along (3, 2, 10) (p)
dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]dist[3] + 10 = 17 ≮ dist[2]
(p)Relax along (3, 5, 15) (p)
dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]dist[3] + 15 = 22 < dist[5]

(p)Done with exploring 3 (p)(p)Remove 2 from vSet (p)(p)Explore 2 (p)(p)No need to consider (2, 0, 9) (p)
(0 has already been explored)
(p)Relax along (2, 1, 4) (p)
dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]dist[2] + 4 = 13 < dist[1]

(p)No need to consider (2, 3, 10) (p)
(3 has already been explored)
(p)Relax along (2, 5, 3) (p)
dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]dist[2] + 3 = 12 < dist[5]

(p)Done with exploring 2 (p)(p)Remove 5 from vSet (p)(p)Explore 5 (p)(p)No need to consider (5, 2, 3) (p)
(2 has already been explored)

(p)No need to consider (5, 3, 15) (p)
(3 has already been explored)
(p)Relax along (5, 4, 8) (p)
dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]dist[5] + 8 = 20 < dist[4]

(p)Done with exploring 5 (p)(p)Remove 1 from vSet (p)(p)Explore 1 (p)(p)No need to consider (1, 0, 14) (p)
(0 has already been explored)

(p)No need to consider (1, 2, 4) (p)
(2 has already been explored)
(p)Relax along (1, 4, 5) (p)
dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]dist[1] + 5 = 18 < dist[4]

(p)Done with exploring 1 (p)(p)Remove 4 from vSet (p)(p)Explore 4 (p)(p)No need to consider (4, 1, 5) (p)
(1 has already been explored)

(p)No need to consider (4, 5, 8) (p)
(5 has already been explored)
(p)Done with exploring 4 (p)

(p)Finished (p)

0

1

2

3

4

5

14

9

7

5

4
3

10
15

8

0

1

2

3

3

0 2 5

2

0

1

3

5

5

2

3

4

1

0 2

4

4

1

5

while vSet is not empty:
find vertex v in vSet such that

dist[v] is minimal
and remove it from vSet

for each edge (v, w, weight) in G:
relax along (v, w, weight)

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[5]

dist 0

∞14

13

∞

9

∞

7

∞20

18

∞22

12

pred -1

-10

2

-1

0

-1

0

-15

1

-13

2



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Proof by induction.

Aim is to prove that before and after each iteration:
1 For all explored nodes s, dist[s] is shortest distance from source to s
2 For all unexplored nodes t, dist[t] is shortest distance from source to t
via explored nodes only

Ultimately, all nodes are explored, so by 1 :
• For all nodes v, dist[v] is the shortest distance from source to v



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Base case:
• Start of first iteration

• 1 holds, as there are no explored nodes
• 2 holds, because

• dist[source] = 0
• For all other nodes t, dist[t] =∞



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step:
• Assume that 1 and 2 hold at the start of an iteration

• Let s be an unexplored node with minimum distance
• We claim that dist[s] is the shortest distance from source to s

• If there is a shorter path to s via explored nodes only, then dist[s] would
have been updated when exploring the predecessor of s on that path

• If there is a shorter path to s via an unexplored node u, then dist[u] <
dist[s], which is a contradiction, since s has minimum distance out of all
unexplored nodes

src

s

explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step:
• Assume that 1 and 2 hold at the start of an iteration
• Let s be an unexplored node with minimum distance

• We claim that dist[s] is the shortest distance from source to s

• If there is a shorter path to s via explored nodes only, then dist[s] would
have been updated when exploring the predecessor of s on that path

• If there is a shorter path to s via an unexplored node u, then dist[u] <
dist[s], which is a contradiction, since s has minimum distance out of all
unexplored nodes

src s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step:
• Assume that 1 and 2 hold at the start of an iteration
• Let s be an unexplored node with minimum distance
• We claim that dist[s] is the shortest distance from source to s

• If there is a shorter path to s via explored nodes only, then dist[s] would
have been updated when exploring the predecessor of s on that path

• If there is a shorter path to s via an unexplored node u, then dist[u] <
dist[s], which is a contradiction, since s has minimum distance out of all
unexplored nodes

src s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step:
• Assume that 1 and 2 hold at the start of an iteration
• Let s be an unexplored node with minimum distance
• We claim that dist[s] is the shortest distance from source to s

• If there is a shorter path to s via explored nodes only, then dist[s] would
have been updated when exploring the predecessor of s on that path

• If there is a shorter path to s via an unexplored node u, then dist[u] <
dist[s], which is a contradiction, since s has minimum distance out of all
unexplored nodes

src s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step:
• Assume that 1 and 2 hold at the start of an iteration
• Let s be an unexplored node with minimum distance
• We claim that dist[s] is the shortest distance from source to s

• If there is a shorter path to s via explored nodes only, then dist[s] would
have been updated when exploring the predecessor of s on that path

• If there is a shorter path to s via an unexplored node u, then dist[u] <
dist[s], which is a contradiction, since s has minimum distance out of all
unexplored nodes

src s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step (continued):
• dist[s] is the shortest distance from source to s

• After exploring s:

• 1 still holds for s, since dist[s] is not updated while exploring s
• Same for all other explored nodes

• 2 still holds for all unexplored nodes t, since:

• If there is a shorter path to t via s then we would have updated dist[t] while
exploring s

• Otherwise, we would not have updated dist[t] and it would remain as it is

src s

s

explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step (continued):
• dist[s] is the shortest distance from source to s
• After exploring s:

• 1 still holds for s, since dist[s] is not updated while exploring s
• Same for all other explored nodes

• 2 still holds for all unexplored nodes t, since:

• If there is a shorter path to t via s then we would have updated dist[t] while
exploring s

• Otherwise, we would not have updated dist[t] and it would remain as it is

src

s

s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step (continued):
• dist[s] is the shortest distance from source to s
• After exploring s:

• 1 still holds for s, since dist[s] is not updated while exploring s
• Same for all other explored nodes

• 2 still holds for all unexplored nodes t, since:

• If there is a shorter path to t via s then we would have updated dist[t] while
exploring s

• Otherwise, we would not have updated dist[t] and it would remain as it is

src

s

s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step (continued):
• dist[s] is the shortest distance from source to s
• After exploring s:

• 1 still holds for s, since dist[s] is not updated while exploring s
• Same for all other explored nodes

• 2 still holds for all unexplored nodes t, since:

• If there is a shorter path to t via s then we would have updated dist[t] while
exploring s

• Otherwise, we would not have updated dist[t] and it would remain as it is

src

s

s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step (continued):
• dist[s] is the shortest distance from source to s
• After exploring s:

• 1 still holds for s, since dist[s] is not updated while exploring s
• Same for all other explored nodes

• 2 still holds for all unexplored nodes t, since:
• If there is a shorter path to t via s then we would have updated dist[t] while
exploring s

• Otherwise, we would not have updated dist[t] and it would remain as it is

src

s

s
explored

unexplored



COMP2521
25T2

Algorithm

Pseudocode

Example

Path Finding

Implementa-
tion Details

Analysis

Other
Algorithms

Appendix
Overview
Example
Correctness Proof

Correctness Proof Outline

Induction step (continued):
• dist[s] is the shortest distance from source to s
• After exploring s:

• 1 still holds for s, since dist[s] is not updated while exploring s
• Same for all other explored nodes

• 2 still holds for all unexplored nodes t, since:
• If there is a shorter path to t via s then we would have updated dist[t] while
exploring s

• Otherwise, we would not have updated dist[t] and it would remain as it is

src

s

s
explored

unexplored


	Algorithm
	Edge relaxation

	Pseudocode
	Example
	Path Finding
	Example

	Implementation Details
	Analysis
	Correctness
	Time complexity

	Other Algorithms
	Appendix
	Overview
	Example
	Correctness Proof


